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I. INTRODUCTION

Adaptive antenna arrays are considered to be useful for
communication systems to suppress undesired signals. The
performance of an adaptive array depends on many parameters.
Generally speaking, the parameters can be classified into three
categories [1]. The first is the signal processing, such as the
number of processing loops and the performance of the component
devices. The second is the antenna array arrangement, such as
the number of antenna elements and their locations. The last
one is the signal environments, which, usually, are uncontroll-
able parameters.

Presently, the cost is still one of the most important
problems in the applications of adaptive arrays. One way to
reduce the cost of an adaptive array 1is to properly place the
array elements. Usually, the requirements for the locations of
array elements are to obtain the longest aperture and to avoid
grating nulls [1]. However, as introduced in literatures [2,3],
to seek the optimum locations needs complicated computations
and often requires a lot of time. In this paper, we present a
simple method which approximately provides the optinmum loca-
tions of linear array elements.

II. DESIGN CONCEPT
The least mean square (LMS) algorithm [4] and the steady

state performance is only considered here. By using the concept

of a spatial signal correlation coefficient, the steady state

output signal-to-interference-plus—-noise ratio (SINR) can be

expressed as [5,6]
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where N is the number of antenna elements, £, and £, are the
relative input power of the desired and the interference signal
with respect to the input noise power. The spatial correlation
coefficient 8 of two signals s, and s, is defined as
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where U; and U, are the phase vectors of the arrived signals s,

and s;, and the superscript * denotes complex conjugate.
Eqn. (1) is plotted with respect to 8 in Fig.l when only one

(2)
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desired and one interference signal arrive. From this figure,
it is seen that the output SINR degrades when B increases and
it degrades rapidly as B approaches 1. Therefore, it 1is
reasonable to set a threshold value of the spatial correlation
coefficient so that the output SINR is acceptably large when
the spatial correlation coefficient is under the threshold
level. In this paper, this threshold 1is assumed as 0.8, and
the degradations of the output
SINR corresponding to it is at
most —4.4 dB when £ ; tends to
an infinity. -

III. ANALYSIS AND RESULTS

Let us first consider a
3—-element array, as shown in
Fig. 2. For simplicity, all
array elements are considered
to be isotropie and no mutual —h - = =
coupling exists. The direc— LU g e We LU
tion-of—arrival (DOA) ¢ of a B
signal is assumed to be Fiz.1 SINR degradation vs. B.
measured from the X-axis,.

In the presence of one
desired and one interference

Y
signal, the spatial correla-
tion coefficient of the desir-— ¢
ed and the interference signal G X
Nl

is provided as
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where d; |
@, = kd,[cos¢ p—cosé ] ;. 3 y .
8, = kd, [cos¢ p—cosed | ) e Fig. 2 Lovrdiseds S3S0E8

Assume here that the DOA's (¢, and ¢é ) of both the
desired and interference signal are uniformly distributed
between # = 0 and 180 degrees. Then, the term in the paren—
thesis of eqn.(%4) varies between -2 and 2. Thus, if we plot
the relation between & , and 8 , obtained from eqn.(4), the
locus should be a straight line connecting the two points
(-2kd, ,—-2kd, ) and (2kd, ,2kd;).

The spatial correlation coefficient can also be plotted

in the (6 ,,8 ) plane. We use discrete darkness for 8 = 0 to
1 with a step 0.1 in Fig.3(a). To make the figure more clear,
only the area of 8>0.8 is shown in Fig.3(b). The desired

locus of &, and @ , in Fig.3(b) is the longest straight line
going through the origin and staying within the region of no
grating lobes ( Note that a grating null of the output SINR
appears as a grating lobe of the spatial correlation coeffi-
cient. ). Because of the symmetry property of 8, only the
positive part of the line is shown. From Fig.3(b), the optimum
interelement spacings are obtained as
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d = 0.46A, d, = 1.854 (5)

where A denotes the wavelength.

The spatial correlation coefficient for eqn.(5) is shown
in the (¢ p,¢ ) plane as Fig.4(a). For comparison, the spatial
correlation coefficient of a half-wavelength spaced array is
also shown in Fig. 4(b). The area of A >0.8 is 13.6% 1in Fig.
4(a) and 31.2% in Fig.4(b).

Next, we consider a 4—element case. It is assumed that
the 4th element is newly added to the three elements spaced
with the optimum distances given by eqn.(5). There are two
choices for the 4th element location: either on the left or the
right side of the existing 3 elements. The spatial correla-
tion coefficient for a 4—element case can be expressed as

=11+ edf14 3024 0395 (6)
where
6, =d,6;/ds, 8, =d,8 ;/ds, (7)
8 3 = kd;[cos¢ p—cosé ; ],

and is plotted in Fig.5. The two possible choices of the opti-
mum d; are obtained as

x4 (2kd,, 2kd,)

2 x4z

2

(b) selection of d, and d:

J-element case.

e e 180" —ryzze

. .
AT 1)

D i _-;.'. ; b

90° — " L i 90 —

I | | | l

N’

> ] i YA Y

E a0 2 an-’ n: 4
0 U . 1 R

. — (b) half-wavelength spaced
ophlians ise

Fig. 4 B vs. Py and 6, (N=3).

—-335-



d; = 4.68A or d; = =-2.40A (8)

where the first one is selected for the longer aperture. The
area of B8 >0.8 is 6.9% for the obtained array, and is 23.9% for
a half-wavelength spaced array.

By continuing the same procedure, an approximate solution
of the optimum interelement spacing can be obtained for a
multiple element array.

IV. DISCUSSIONS AND CONCLUSION

A simple design method wusing graphical expressions of a
spatial signal correlation coefficient 1is introduced to deter-
mine the locations of the array elements 1in a linear adaptive
array. By this method much better output SINR can be obtained
compared with the equally spaced linear arrays. In addition,
the computation is much simpler and quicker compared with the
ordinary optimum seeking methods. Furthermore, because all of
the loci are shown graphically, this method provides a clear
image to help one to understand the overview of the performance
of an adaptive array.

V. REFERENCES

(1] Y. Zhang, et al., Tech. Rep. IEICE, AP86-119, pp.1-6, Jan.
1987.

[2] N. Goto, Proc. IECE Japan, 63, pp.760-764, July 1980.

[3] IECE Japan(ed.), Antenna Engineering Handbock, Chpt.1l1,
Ohm—-sha, 1980.

[4)] B. Widrow, et al., Proc. IEEE, 535, pp.2143-2159, Dec. 1967.

[5] H. Lin, IEEE Trans., AP-30, pp.212-223, March 1982,

[6] I. J. Gupta, et al., IEEE Trans., AES-19, pp.380-388, May
1983.
TS -4
3oi = i ‘

= i
Alnvisible 4
# - region
[ I
4 bxd 7w 0 -
8 2 5 3

(a) ds>0 case. (b) d;<0 case.

£

199

I\J——'_

Fig.5 Selection of dy (N=4).
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