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Abstract

MIMO leads to dramatic improvement in channel capacity
and link reliability of wireless systems. However, a MIMO
channel has only one degree of freedom in the keyhole
environment. As this result, it reduces achievable channel
capacity and link quality. This paper proposes the MIMO
repeater system that is mitigated to reduce MIMO channel
capacity, which can provide a multi-stream transmission in
the multi-keyhole environment. Limit of the transmission
performance of MIMQ is given singular value or eigenvalue
essentially, hence we consider a represeniation by an
approximate equation of the probability density function of
the largest eigenvalue connecting to the theory of space
diversity. It is shown that calculated values based on the
proposed method agree well with simulated values.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communi-
cation systems have multi-element antenna arrays at the both
the transmitter and receiver sides. MIMO has been performed
with the objective of higher transmission rate and/or reliable
data ransmission under finite spectral resources by using
array antennas for both transmission and reception [1]-[4]. A
large number of papers have been published on stimulating
MIMO research opportunities with the motivations of
implementing the arrays in terminals such as wireless LANs
and WiMAX.

The MIMO channel capacity can be decreased when the
MIMO function is relayed using only one antenna, or
waveguiding structure, even though the signals at the antenna
elements are uncorrelated [51,[6]. This effect has been termed
“keyhole™ or “pinhole” (hereafter, we call it keyhole). In the
keyhole environment, the multi-stream transmission becomes
impossible, and high-speed, high-reliability transmission can
not be expected.

In this case. to maintain the ability of high-speed and high-
reliability data transmission, the establishment of a general
idea of a MIMOQO repeater system is importance that will still
confirm the efficient transmission. Research on system
channel model validation is essential about singular value or
eigenvalue [7]. In the future, it is believed that the service
area of the MIMO will spread. Thus, expansion of the service

area to the isolated space is anticipated. In general, in the
MIMO repeater system, the whole channel is equivalent to a
MIMO multi-kevhole environment [8]. The information
transmission performance of MIMO is evaluated by average
channel capacity and average BER are calculated using the
probability density function of singular value of channel
response matrix or eigenvalue of correlation matrix [9]. But,
the analytic solution of the probability density functions of
eigenvalues is not derived in the MIMO multi-keyhole
environment yet.

In this paper, the MIMO repeater system (where the multi-
keyhole model is adapted) is proposed and the MIMO multi-
keyhole model analyses the eigenvalue distribution and
average channel capacity. In addition, the approximate
expression of the probability density function of the largest

eigenvalue is presented in the MIMO multi-keyhole
environment.
2. SYSTEM MODEL
2.1. MIMO REPEATER SYSTEM

This paper discusses that the MIMO repeater system can
expand MIMO function in another isolated space, and it can
enlarge the service area of the MIMO function. Figure. 1
shows the concept of the MIMO repeater system.

We consider that the MIMO repeater system with multiple
antennas is capable to extend multi-stream transmission from
the MIMO service space to the isolated space. We consider
the MIMO multi-keyhole channel with M transmits antennas,
N receives antennas and K repeater system antennas. Fig. 2
shows structure of the MIMO repeater system.

MIMO service space

MIMO Repeater System

Fig.1 Concept of MIMO repeater system.



The MIMO repeater system consists of Access Point (AP),
a repeater system and Mobile Station (MS). The function of
the repeater system can be repeating the signal to isolated
space. The signal is transmitted from AP side, it is received
by the repeater system, and then it retransmitted to MS side.
The signal processing of the repeater system is only
amplification and relay of received wave. This paper assumes
Rayleigh fading environment with ii.d. ( independent and
identically distributed) statistics .
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Fig.2 Structure of MIMO repeater system.
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2.2. CHANNEL MODEL

We consider the MIMO repeater system in the MIMO
multi-keyhole environment. The received signal vector r is
given by

r=HIG(H,s+nm)+nn, (1a)

where s denotes the transmit signal vector, n,, denotes the
noise vector at the repeater system, n,, denotes the noise
vector at MS, H, denotes the channel matrix from AP to the
repeater system, H_ denotes the channel matrix from the
repeater system to MS, G denotes the gain matrix in
amplitude at the repeater system.

Let us define the following matrix notations
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where the superscript * denotes the matrix transpose, the
diag[-] means a matrix composed of diagonal components.

As the first step of ecigenvalue analysis of the MIMO
repeater system, we will assume the noise n,, and n,, are
negligible. Under this assumption, the noiseless channel
matrix H,' is given by

H, =H GH, (2)
The gains between receive and transmit antennas of the
repeater system are assumed to be constant, and the gain G at
the repeater system is normalized by the number of antennas,
K.

1

ﬁ I K=K (3)
Consequently, the channel matrix in the MIMO multi-keyhole
environment through the MIMO repeater system is given by

1
H,-—HH, 4
e JE r

This papers discuses the channel matrix of Equation (4).
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3. EIGENVALUE OF MULTI-KEYHOLE ENVIRONMENT

3.1. EIGENANALYSIS

As shown below, the channel matrix H, of the MIMO multi-
keyhole environment can he represented by singular value
decomposition (SVD)[2].

H,=EDE" =3 ie, e 5)
where o
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M, = min(M ,N.K) (6d)

where 4, is the i-th eigenvalue of the correlation matrix HH,"
(or H,"H,) and is ordered according to i=1,2,...M,. e, is the
eigenvector belonging to eigenvalue & of H,"H,, and e is
the eigenvector belonging to eigenvalue ; of HJH,™.

3.2.  PROBABILITY DENSITY FUNCTIONS OF EIGENVALUES

The analytic solution of the probability density functions of
the eigenvalues is not yet derived in the general case of the
MIMO multi-keyhole environment. However, if the number
of repeater system antennas is limited to one, the probability
density function of the eigenvalue could be derived as
follows: With K=1, the channel matrix of Eq (4) is given by

H,=HH, ea

= [hlrl hy, ;1.;'1}"[""111 h, ’r’;;w]

In matrix notations we can now define the correlation matrix
R by

R=HH"=HHH'H” ®)
The rank of the Eq. (8) is one. Therefore, the largest
eigenvalue 4 | is given by

A, = Trace[R] = Trace(Ht, 0" 0, H ) ©)
The Trace(ILIL™) has central chi-square distributed with 2N
degrees of freedom (since it is sum of probability variables
with an exponential distribution). We can obtain the
probability density function Poy( 1 ) as,
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AN (10)
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In the same way, HJH/" has central chi-square distribution
with 2M degrees of freedom. Therefore, the probability
density function p( 4 ,) of the largest eigenvalue is given by
- A
P(ﬂd=j-0 MPgN(H)P:_u[M}f“ (11)
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where I' (+) is Gamma function, K, (*) is the « -th modified
Bessel function of the second kind.

Fig. 3 shows the cumulative distribution function of the
largest eigenvalue calculated from the theoretical value of the
Eq. (11) and simulated value for M=N with M=2,3,and 4. We
show the cumulative distribution function for i.i.d.
environment for reference depicted by solid lines.
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Fig. 3 Comparison of cumulative distribution of the largest eigenvalue
(N XM v.s. NX1 X M).

Then, Figs. 4 and 5 show the cumulative distribution
function of the eigenvalues using Eq. (4) for M=N with 2 and
4, while K=1,2,3.and 4.

Figs.4 and 5 show that the increment of antenna number K
of the repeater system increases the rank and diversity order
in the MIMO multi-keyhole channel.

3.3. CHANNEL CAPACITY

The MIMO repeater system is shown in Fig. 2 decomposed
by SVD has a different method for information transmission
depending on whether the channel state information for both
transmission and reception is known or not. When channel
state information is available for both, we have two options:
The MRC (Maximal Ratio Combing) transmission where all
the information is assigned on the largest eigen-path, and the
ET(Eigenmode Transmission) where the power is assigned to
each eigen-path, and the information can be transmitted in

parallel. The distribution of the optimum power for each
channel is determined based on Water Filling (WF) scheme.

The upper bound of the average channel capacity with the
power allocation via WF method is given by the following
equations based on Shannon’s information theory.

M -
(Cor ) = [E:Ilmgz(l-i- (,1‘_)?,!_) (bit/s/Hz) (12a)
M,
2 7= 7o (12%)

Cyr denotes the channel capacity in the case of optimal power
allocation based on WF. <C> denotes the ensemble average
of the channel capacity C. The y,in Eq. (12) is the CNR
when the signal is radiated from a single antenna and then
propagated through a path with unit gain, and is received by a
single antenna.
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Fig. 4 Cumulative distribution of eigenvalues(N=M=2 K=1~4).

Fig. 6 shows the average channel capacity in ET of the
MIMO repeater system for M= N=2, while k=1,2,3,4, and 5.
It also plots the result in the case of not using the repeater
system (i.e., 2 X 2 with figure) for comparison. In Fig.6,
difference between the largest and the smallest value of the
average channel capacity of ET is approximately 1bits/s/Hz,
when K repeater system antennas is two or more.

Then, we compare the case of K=2 or more versus K=1 in
the repeater system. In this case, the difference of average
channel capacity increases, as the increase of CNR. On the
other hand, the MRC transmission does not depend on the
number of antennas of the repeater system, the nearly same
average channel capacity is gained.

4.  APPROXIMATION EQUATION OF PROBABILITY
DENSITY FUNCTION OF LARGEST EIGENVALUE
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In the previous chapter we have discussed the distribution of
the eigenvalues which is required in the (transmission
performance evaluation, and they are obtained by the
computer simulation. Closed form of the probability density
function of the eigenvalues in the MIMO multi-keyhole
environment is not solved yet. Therefore, we consider a
representation by an approximate equation linked to space
diversity [10][11].

Here, as the first step in eigenvale analysis, we will
consider the probability density function of the largest
eigenvale.
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Fig. 5 Cumulative distribution of eigenvalues(N=M=4,K=1~4).

4.1. APPROXIMATE MODEL

In this section, we show the approximate equation of the
probability density function of the largest eigenvale based on

the theory of space diversity. This paper assumes Rayleigh
fading environment with ii.d. (independent and identically
distributed) statistics. A simplified estimation for the
distribution of the largest eigenvalue of the correlation matrix,
that is, key information on estimating MRC transmission
characteristic in Rayleigh MIMO channel is given in [10][11].
In the same way, we transform it to the single-keyhole
structure that shows the configuration of the MIMO repeater
system with K=1 in Fig. 7. To put it more concretely, space
diversity theory is applied to AP side and MS side, respective.
As a result, the approximate equation of the probability
density function of the largest eigenvalue under the MIMO
multi-keyhole environment can be solved from the probability
density function in the single-keyhole model by Eq. (11). The
approximate equation is given by

NeMa2l
) /’!]]
A

4
AL(N +L)0(M + L) K"””[z‘.IJ A ]
where L and A denotes the parameter which is related to
diversity order, and diversity gain, respectively.

The relationship of parameter L. when the structure is
converted from K=2 to K=1 is shown in Fig. 8. From Fig.
8, power function can be approximated by the function L
using parameters M, N and K. It can be calculate by

LM, K,N)=alM <(K -1)xN)’ (14)
where « is 0.4343, f is 0.6681. In a similar fashion, the
parameter A may be given an approximate equation.

plA)= (13)
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Fig. 6 Throughput performance of MIMO eigenmode transmission (Case
of N.M=2) in the MIMO repeater system.

When the calculated values are applied to Eq. (14), Fig. 9
shows the result of comparison between the calculated values
and simulated values of parameter (M+N+2L)/2. It is shown
that the calculated values coincide well with the simulated
values. Then, Fig. 10 shows the probability density function
of the largest eigenvalue comparing the calculated values with
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simulated values. It is shown that calculated values based on
the proposed method agree well with simulated values in the
MIMO multi-keyhole environment. Here, as the first step of
eigenvale analysis, we have shown the approximate equation
of the probability density function of the largest eigenvalue in
the MIMO multi-keyhole environment.

LMAL K=l NeL

Fig. 7 Equivalent configuration for diversity order analysis concerning the
largest eigenvalue.

This calculation model can be applied to simplified
calculation and to get good accuracy of the transmission
evaluation, although it does not refer mathematical and
physical viewpoint of the Eq. (13). However, the Eq. (13)
includes theoretical Eq. (11) in the case of K=1, we will
consider that it satisfies the portion of the necessary
conditions.

5. CONCLUSIONS

We proposed a MIMO multi-keyhole model for the analysis
of the MIMO repeater system, which can provide the relay
function to the isolated space to realise the high-speed and
high-reliability data transmission. Then, we have shown the
approximate equation of the probability density function of
the largest eigenvalue connecting to the theory of space
diversity. Tt showed that calculated values based on the
proposed method agree very well with simulated values in the
MIMO multi-keyhole environment.

Then, We have shown the number of relay antennas, which
are required to the MIMO repeater system with a viewpoint of
average channel capacity.

This paper has shown only the approximate equation of the
probability density function of the largest eigenvalue, more
investigation is necessary concerning the distribution of exact
solutions including those of other eignvalues.
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Fig. 8 The relationship between L(M.K.N) and M(K-1)N.
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Fig. 9 Parameter (M+N+21)/2 comparison between simulated and calculated
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