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Abstract A model is proposed to predict the base-station signal
statistics in urban areas where there is no local scattering
around the base. The model eliminates some restrictive assumptions
inherent 1in previous models and provides simple yet accurate
expressions for fading correlation. A generalization concerning
local scattering in the vicinity of the base is also indicated.

1 Introduction

The only existing signal reception model for a base station with no local
scatterers, which has been proposed by Lee (1973). assumes that the
scattering in the vicinity of the mobile is caused by a ring of uniformly
placed scatterers. This does not portray the actual situation where the
scattering is due to randomly positioned scatterers in an area, giving
signals arriving at the base with random time delays. The model used in
this paper assumes an amorphous scattering area around the mobile,
Associating random time delays with individual scatterers, it gives a
better representation of the real channel,

In the paper we consider a case in which a two-branch hybrid
diversity system. where the antennas are separated in space and [requency,
is used at the base station. The mobile unit has a single transmitting/
receiving antenna.

2 Proposed Model

2.1 Basic Assumptions

Suppose that two signals of different frequencies w; and wy, which are
transmitted from the mobile, propagate by way of scattering from N
scatterers randomly placed over an area around the mobile and are received
at two base antennas, each tuned to one of the frequencies (see Fig.l).
Then. at both receiving points there will be N component waves. all with
random amplitudes, phases and angles of arrival. The random amplitudes can
have any distribution. The phases are assumed to be uniformly distributed
over [0.2x). The angles of arrival at both receiving points at the base are
approximately the same since the propagation distance is large compared to
the antenna separation, These angles of arrival will be assumed to be
identically distributed for each of N scatterers and its distribution will
he taken as uniform over a very narrow range. We assume that there are no
local scatterers around the base. The propagation time delay and angle of
arrival of each component wave will be considered to be independent. and
the distribution of time delay difference r, which is defined relative to
the shortest propagation delay T,. will be taken to be exponential (Clarke,
1968). It is also assumed that isotropic antennas are used at the base.

2.2 Derivation of correlation coefficient

Signal statistics at the base station can be determined from the proposed
model, and in particular the envelope correlation of the received signals
separated in space and frequency. At each of the receiving antennas A and
B. the received signal will be the superposition of N waves, one of them
being the time-shifted version of the other. Thus
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where a; and o; are, respectively, the amplitude and angle of arrival of the
ith waveform. T; is the propagation time of the ith waveform arriving at the
centre point M between A and B. The antenna separation is denoted by £ and
¢ is the speed of light.
The covariance function of vy and vRg. denoted by R,(£,Q). is the mean
of their conjugate product:; namely,
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where @=u,-w, and w, =(w; +wy)/2. To a good approximation, the correlation
coefficient of the signal envelopes is equal to the squared magnitude of
the correlation coefficient of the complex signals (Clarke, 196%).Thus
taking the expectation in (2) under the assumptions given in Section 2.1
and simplifying, the correlation coefficient of signal envelopes can be

shown to be equal to 5
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where S is the time-delay spread (Clarke, 1968) and k=w,/c. In obtaining
(3) the probability distribution of a is taken to be uniform over the range
l[ap—15/2, a,+8/2,]. Note that the term 1/(14+Q38?) is the frequency
correlation coefficient whereas the rest corresponds to the spatial
correlation coefficient. Frequency-space correlation coefficient p,(£.92)
can be obtained by numerically evaluating the above integral for whatever
the mean and width of the angular sector is.
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2.3 Simplified expressions for a,=0 and a,=7x/2.

The integral in (3) can be solved analytically for specific values of a,,
and in particular 0 and 7/2 when 78 is very small. Consider the case when
a,=0, that is when the mean angle of arrival coincides with the axis of the
diversity array. To obtained the spatial correlation coefficient of signal
envelopes, p ,,1(5). one can use Taylor series expansion for cosa around 0 up
to the second order, that is cosax1—a?%/2. This yields
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where F(u) is the Fresnel integral in complex form (Clarke and Brown, 1980)
and u=3(£/2.&)1ﬁ. In the case of a,=m/2, that is when the mean direction of

arrival is perpendicular to the axis of the antennas (broadside case). one
can use the approximation cosa=sin(s/2—a)x 7/2-a.Thus we obtain

Ao |(€) = sinc(BE/A). (5)

2.4 Comparison of theoretical results with experimental data

The spatial correlations. g, (§), can be calculated numerically from (3) for
arbitrary a,. Figure 2 shows p,(§) against normalized antenna separation,
for various a,. Here., J=1". The curves indicate that. to achieve a
correlation of about 0.7, a separation of at least 18) is necessary when the
antennas are placed perpendicular to the mean direction of arrival.
However. for a,=0", the correlation does not decrease significantly up to
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separations larger than 100A. That the in-line case correlations are much
higher than those obtained in the broadside case is reasonable. since the
two received fading signals will tend to be the same in the in-line case.
When a,>10" the correlation falls off fast with increasing o, and for
a,>50" a, has little effect on the correlation.

The experimental data due to Lee (1971, 1973) are used to verify
these results. The theoretical curves calculated from (3) for various A as
well as some experimental data taken when no local scatterers are present
are illustrated in Fig.3 and 4 for a,=30" and a,=60", respectively. It
can be seen that the agreement between the theoretical curves and various
data sets is good. Also, the # values for which the theoretical curves fit
experimental data are consistent for the a,=30" and 60° cases. Value of 3
in the range 1" ~18° give the best fit to Lee’s data. Also note that the
correlation increases as ( decreases: that means, directivity features of
the incoming signal affect the correlation.

Theoretical correlations suggested by Lee’'s model (Lee, 1973) are
considerably lower than most of the measured data except when 8 is very
small (0.47). There is also inconsistency between values of 38 for different
incoming directions. In this sense, the model proposed in this paper seems
to give a better agreement with the measurements compared to the model
proposed by Lee (1973).

3 A More General Model

In the proposed model we have assumed that the angle of arrival and
propagation time delay of a component wave are independent. This is a valid
assumption for the case when the scattering area surrounding the mobile is
far away from the base and no local scatterers are present around it. In
this case, a particular angle of arrival can be associated with several
possible time delays due to different scatterers within the area. Thus a
correlation between the incoming direction and time delay would not be
likely. However., in the case of local scatterers around the base longer
time delays can be associated with certain directions depending on the
shape of this scattering area. Therefore, in this more general case. (2)
would be given in the form of

R,(£.Q) =exp [_jQTo]f f gla)pla, ) exp[ — jQr] exp[jkécosa] da dr. (6)
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That means, there will be coupling between the frequency and space
correlations as they are determined by the joint pdf p(a,r). Note that in (6)
the antenna gain function gla) is included to represent cases where
nonisotropic antennas are used at the base.

On the other hand. the model can also be generalized to take the
effect of possible local scatterers by a proper choice of p(e). In such
cases pla) can be considered as a superposition of two pdf’'s. one of thenm
being non-zero over a wide range (possibly [0,27)) to represent the local
scattering effects and the other being uniform to represent main incoming
signal.

4 Conclusions

A statistical model for base-station diversity reception has bheen
developed. Using the model. analytical relations for the envelope
correlation have been found. Comparisons between the theoretical results
and some available experimental data provide adequate justification for the
model. The model proposed in this paper has more flexibility and
applicability than the one due to Lee (1973), which is the only other
available model. It is also more consistent with the measured data.
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