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1. Introduction

Multiconductor transmission lines arranged in a multilayered dielectric medium are widely
used in the design of inicrowave and millimeter-wave integrated circuits. One of the important
subjects on such transmission systems is to evaluate efficiently as well as accurately the high-
frequency electromagnetic coupling between nearby conductor lines. The coupling causes a
crosstalk that affects seriously the circuit performance in high speed operation. The transmis-
sion characteristics of coupled conductor lines can be rigorously analyzed using various numerical
methods[1]. However those direct solution methods become much involved both analytically and
numerically when the number of conductor lines increses. In this respect, we have recently pro-
posed a coupled-mode theory[2] for multilayered and multiconductor transmission lines based
on the full-wave analysis. In this approach, the total fields supported by multiconductor lines
are approximated by a linear combination of the modal fields associated with the isolated sin-
gle conductor lines, and the coupled-mode equations governing the evolution of amplitudes of
currents on each line are systematically derived by making use of the reciprocity relation[3].

The purpose of this paper is to apply the proposed coupled-mode theory to the analysis
of various coupled microstrip structures and to confirm the validity of the approximation. The
dispersion characteristics of two nonidentical coupled microstrip lines and N identical coupled
microstrip lines are calculated using the coupled-mode theory. It is shown that the results are
in very close agreement with those of the rigorous Galerkin's moment method solutions over a
broad range of weak to strong coupling, indicating that the coupled-mode theory yields a good
approximation with enough accuracy.

2. Formulation

We consider first two coupled nonidentical microstrip lines as shown in Fig. 1. Two
microstrips a and b of widths 2w, and 2w, and zero thickness are situated with spacing 2d
‘on the substrate-cover interface in a trilayered structure, which consists of a ground plane of
perfect conductor, a dielectric substrate of thickness i and relative permittivity &;, and a cover
layer of free space. Let 8,. &,({,y) and iz,,((,y), and 7,(¢) (v = a,b) be the the propagation
constant, the eigenmode fields, and the eigenmode current in the Fourier transformed doinain
for the fundamental EHg mode of the isolated single microstrip v. Then we have the following
coupled-mode equations [2]:
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Lup = €0, 17,2 (0) + &,2(C. 1) (C) (vt =a,b) (4)
where a(z) and b(z) are the amplitude functions of currents on the microstrips a and b, and the
eigenmode fields have been normalized so that Ny = Ny, = 1.

Next we consider the coupled-mode equations for multiple identical coupled microstrip
lines. Tig. 2. sliows the cross section of three identical coupled microstrips e, b, and ¢ of
width 2w and zero thickness, which are situated with equal spacing 2d on the substrate-cover
interface in a trilayered structure. Let g, €((,y) and h((,y), and F(¢) be the the propagation
constant, the eigenmode fields, and the eigenmode current in the Fourier transforined domain for
the fundamental EHg mode of the single microstrip in isolation. Then we obtain the following
coupled-mode equation [2]:
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where a(z), b(z), and ¢(z) are the amplitude functions of currents on the microstrips «a, b,
and ¢. Equations (1) and (5) show that the problem of coupled nicrostrip lines is reduced to
the eigenvalue problems for the coupling coefficients matrix, which can be easily solved using
a standard computation program for matrix equations. The eigenvalues give the propagation
constants of coupled modes in the coupled microstrip lines, and the associated eigenvectors
determine the excitation ratios of currents on the individual lines for the respective coupled-
modes. )

3. Numerical results

The coupling coefficients Ky, aud N, (v, g = a,b) for two nonidentical coupled microstrip
lines and K, K, Ny, and N for three identical coupled microstrip lines are given by the simple
overlap integrals between the eigenmode fields and currents in Fourier transformed domain for
the individual isolated single microstrips. The eigenmode fields and currents of the isolated single
microstrip can be easily calculated using Galerkin’s moment method in the spectral domain. The
integrals in Eqs.(3) and (8) can be evaluated in closed form using the dyadic Green's function in
the spectral domain. The integrals in Eqs. (2} , (6). and (7) are efficiently calculated using the
spectral data which were obtained in Galerkin’s moment method analysis of the conventional
single microstrip line. The normalized propagation constants B/kg of the even and odd EHy
modes of two nonidentical coupled microstrip lines calculated by Eq. (1) are given in TABLE
1 for w, = 1.5mm.wy = 2.0mm.h = 0.635mm,z, = 9.8. f = 10 aud 20GHz, and various
separations dfwg, (Way = (wa + wp)/2), and compared with those of the direct Galerkin’s
moment method solutions, where kg is the wavenumber in free space. Similarly the normalized
propagation constants 8/ kg of the three fundamental EHy modes calculated by the coupled-mode
equations (5) are given in TABLE 2 for w = 1.5mm, h = 0.635mm, £, = 9.8. f = 10 and 220G H z,
and various separations d/w. These nuinerical results were obtained by expanding the transverse
and longitudinal current components in terms of the lowest six Chebyshev polynomials weighted
by appropriate edge factors. We can see that the results for both configuratious show a very close
agreentent with those of the rigorous Galerkin’s moment method solutions over a broad range
of the separation. Egs. (6) and (7) reveal that the coupling effects are described only by the

- 20 -



integrand factors cos(2(d) and cos(4(d), which depend on the separation distance between two
microstrips concerned. Therefore the coupled-mode equations for N identical coupled-microstrip
lines with equal spacing can be easily deduced by the analogy to Egs. (5)-(9). Fig. 3. shows
dispersion curves of the fundamental N modes calculated using the coupled-mode theory for N
identical coupled-microstrip lines with w = 1.5mm, h = 0.635mmn. &, = 9.8, and d/w = 1.3. It
is worth emphasizing that even for N = 10, the computation time of the coupled-mode analysis
is almost same as in the numerical analysis by Galerkin's moment method for a conventional
single microstrip.

4. Conclusion

We have presented a coupled-mode theory for the coupled microstrip lines in trilayered
structure on the full-wave analysis. The coupled-mode equatious for two nonidentical coupled
microstrip lines and three identical coupled microstrip lines have been obtained in closed form.
The coupling coefficients are given by the simnple overlap integrals between the eigeninode fields
and currents in the spectral domain for the individual isolated single lines. This greatly simnplifies
the computational procedure and therefore remarkably reduces the computation time. The
numerical results of the propagation constants are in very close agreement with those of the
rigorous Galerkin’s moment method solutions over a broad range of weak to strong coupling.
This fact suggests that the coupled-mode theory is an efficient analytical and numerical technique
to characterize the high-frequency crosstalk in highly integrated microwave circuits.
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Fig. 1 Cross section of two nonidentical cou-

Fig. 2 Cross section of three identical cou-

pled microstrip lines.

pled microstrip lines.
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Fig. 3 Dispersion curves of the fundamental N modes calculated using the coupled mode
theory for N identical coupled microstrip lines with w = 1.5mm, h = 0.635mm, ¢, = 9.8, and
dfw=13.

TABLE 1 Normalized propagation constants 8/ky of the even and odd EHy modes of two
nonidentical coupled microstrip lines with w, = 1.5mm,wy = 2.0mmn, h = 0.635mm. e, = 9.8.
CMT and MOM refer to the present coupled-mode theory and the direct Galerkin's moment
method.

(a)YOGH z(B, /ko = 2.89439, B,/ kg = 2.942006)

Even Mode Odd Mode

dfwgy 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 3.00037 | 2.99366 | 2.97199 | 2.94553 |f 2.73983 | 2.83933 | 2.87087 | 2.89186
MOM | 3.01726 | 2.99168 | 2.96730 | 2.94487 || 2.77494 | 2.83692 | 2.86722 | 2.89139

(b)20GH z(f3,/ ko = 2.97776, B/ kg = 3.01480)
Even Mode Odd Mode
d/wav 1.10 1.30 1.60 2.00 1.10 1.30 1.50 2.00
CMT | 3.05215 | 3.03734 | 3.02232 | 3.01465 || 2.89359 | 2.95411 | 2.97217 | 2.97774
MOM | 3.06466 | 3.03771 | 3.02110 | 3.01473 || 2.92050 | 2.95696 | 2.97214 | 2.97784

TABLE 2 Normalized propagation constants 8/kg of the three fundamental EHy modes of three
identical coupled microstrip lines with w = 1.5mm, h = 0.635mm, e, = 9.8.

(a)10GHz(Bo/ko = 2.89439) (b)20GH z(fo [ ko = 2.97776)
Ist Symmetric Mode 1st Symmetric Mode
djw 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00

CMT | 3.05905 3.01694 2.97562 2.92196 || 3.08526 3.04486 3.01351 2.98383
MOM | 3.04599 3.01297 297473 2.92194 || 3.08215 3.04637 3.01438 2.98387
Ist. Asyminetric Mode 1st Asyminetric Mode

d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 2.88127 2.88861 2.89176 2.89399 || 2.97568 2.97728 2.97765 2.97776
MOM | 2.88103 2.88851 2.89172 2.89399 (| 2.97558 2.97726 2.97765 2.97776
2nd Symmetric Mode 2nd Symimetric Mode

dfw 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 2.69520 2.76157 2.80895 2.86607 || 2.83599 2.90071 2.93910 2.97157
MOM | 2.66121 2.75540 2.80767 2.86603 (] 2.83059 2.90328 2.94017 2.97161
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