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1 Introduction

Adaptive arrays under directionally constrained minimization of power (DCMP)
method perform to minimize the array output power while maintaining a constant re-
sponse to the desired signal at the specified direction and frequency [1].

As to the transient performance, the steepest gradient algorithm does not converge
fast when eigenvalues of the input correlation matrix are diverged widely. On the other
hand, the sampled matrix inversion (SMI) algorithm does not suffer such effect from the
adverse input environment. It, however, is vulnerable to hardware errors such as weight
values since the output is not fed back to the control.

In this paper we consider the recursive algorithm (2], which takes care of this suscep-
tibility of SMI. Examples will be shown to demonstrate the improvement via computer
simulation.

2 Principle

We consider the case that incident waves are all narrow-banded, and denote the
inputs and variable weights by complex expressions in the form of column vectors, X
and W, respectively. Thus, the output voltage, y, and power, p.., of the array can be
expressed as follows.

y=WiX = X'W*, pow =yy" = WHR W, R, =E[XXHY (1)

where the superscripts *, = and ! denote transpose, conjugate and conjugate transpose
(Hermitian), respectively. Ry is the correlation matrix of input, and E[-] denotes expec-
tation.

The principle of DCMP can be expressed as follows,

minimize WHYR,W for W, subject to C'W™=H (2)

where C and H are the constraint matrix and constraint response vector with respect
to the specified direction, respectively. The optimum weight vector is given, as a closed
form, by

Wop = Ry [C' R C ™' H (3)

Sampled matrix method estimates the Ry, to be used in (3) by sampled input as in
the following:

Rux(k +1) = BRu (k) + (1 — B)X (k) XH(K) (4)
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where 3 is “forgetting factor,” satisfying 0 < # < 1 . A matrix inversion formula is
applied to (4), and SMI uses the following equations.

1 5. RZA (k)X (k) X" (k) RZ (k)
1) = RS + 5—(1-B)X"(k)Rz (k)X (k)

(5)

W(k +1) = RZM(k + 1)[CPRZM(k + 1)C) ' H* (6)

On the other hand, we can separate W into constant weight F' which forms the
mainbeam to the desired direction, and variable weight V' which is used to minimize
the interference. Thus, we have W = F + PV, where P is the projection matrix which
orthogonalizes V' to the desired signal vector. Eq. (2) can be rewritten as

minimize poyt = (F 4+ PV)UR(F +PV) forV (7)
and the optimum values of V and W are obtained by the closed forms [2],
VDpt = _QPRxxFa Wopt =F- Pvept (8)

where Q@ = (PRyP)* and the superscript * denotes pseudo inverse. Applying (4) to
(8), the following algorithms are derived [2].

1 1-5  QPX(R)X"(K)PQ(K)
Qk+1) =300 + == 5 1 A X ()RR X(F) (©)
W(k+1) = W(k) — (1 - 8)Q(k + 1)PX(k)y*(k) (10)

It should be noted that (10) involves the output y, forming a feedback loop. Thus,
both the rapid convergence and immunity to hardware errors are established in this
algorithm.

3 Numerical examples

In order to compare transient performances of the SMI and recursive algorithms,
computer simulations were carried out on 4-element, equispaced linear array with the
spacing of a half wavelength. In one iteration, ten samples were used for smoothing. We
assume that, as shown in Table 1, two monochromatic plane waves, the desired signal
and interference, are incident on the array. Thermal noise is assumed to be of the same
magnitude and independent at each input. The actual weight W has constant error,
AW, i.e.

W=W+AW (11)

where W is the nominal weight. Each element of the vector AW assumed to be inde-
pendent and follow Gaussian distribution.

Fig.1 shows the learning curves of the desired signal and interference components in
the outputs of the SMI and recursive algorithms. In this case, the relative error is 1%
(the standard deviation). Fig.2 shows the results for the case where the error is 5%.
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In both figures, it is evident that the proposed recursive algorithm is able to com-
pensate for the weight errors. This can be understood as follows.
Considering that y* = X"W, we rewrite (10) by

Wk +1) = W(k) — (1 - 5)Q(k + 1)PX (k) X (k)W (k) (12)
With (12) , we obtain
W(k+1)=W(k)—(1-8)Qk+1)PX(k) X (k)W (k) (13)

which means that the actual weight W is updated rightly by (10).

4 Conclusion

The merits of the recursive algorithm for adaptive arrays are shown via computer
simulation. The consideration to reduce the computing time per iteration and also to
apply the concept to hardware errors in general is under study.
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desired signal (S) || fs =0° ps =1
interference (I) 6y = —50° | pr = 100
thermal noise (N) py = 0.01
forgetting factor 8 =0.99
weight error (rms) (a): 1 (%)

(b) : 5 (%)

Table 1: Input data used in the computation.
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Fig.1: (error: 1% )
(a) The learning curves for the SMI.
(b) The learning curves for the recursive algorithm.
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Fig.2 : (error: 5% )
(a) The learning curves for the SMIL
(b) The learning curves for the recursive algorithm.
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