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1. Introduction

Spatial correlation is an important index to evaluate performance of multi-antenna systems. Low
correlation leads to good diversity performance [1] and large channel capacity [2]. The equations of
spatial correlation are derived from Bessel function [3], radiation patterns [4]- [6], S-parameters [6], and
the channel matrix [7]. Although the values of the correlation coefficient are different according to the
derivation methods, previous researches have not focused on the issue. This paper clarifies applicable
conditions for the equation of each correlation coefficient. Then, we reveal that under Rayleigh fading
environments, the spatial correlation is properly evaluated by the equation based on three-dimensional
radiation patterns, however, under environments with strong direct waves, the equation based on the
channel matrix should be used for the evaluation.

2. Equations to Calculate Spatial Correlation Coefficient
Spatial correlation is divided into two types, such as complex correlation coefficient ρ and envelop

correlation coefficient ρe [8]. They represent correlation for amplitude and power, respectively and satisfy
ρe ≈ ρ2. This paper focuses on complex correlation coefficient in two-element arrays.

In Rayleigh fading channel, spatial correlation between two positions are represented using Bessel
function, ρbessel = |J0(kd)| [3]. Here, k is the vacuum wave number, J0 is the 0th order Bessel function,
and d is the spacing of the two-element array. Then, when incoming wave with N plane waves is concen-
trated in the horizontal plane under Rayleigh fading environment, spatial correlation between two receive
antennas are given as follows [4]:

ρ2D =

∣∣∣∣∫ 2π
0

A∗1(φ)A2(φ)dφ
∣∣∣∣√∫ 2π

0
A∗1(φ)A1(φ)dφ

√∫ 2π
0

A∗2(φ)A2(φ)dφ
(1)

where A1(φ) and A2(φ) denote the complex electric field radiation patterns in the horizontal plane for
antenna elements, #1 and #2, respectively, and {·}∗ represents the complex conjugate. As a more general
equation, ρ is given by three dimensional radiation patterns, A1(θ, φ) and A2(θ, φ), as follows [6]:

ρ3D =

∣∣∣∣∫ 2π
0

∫ π
0

A1(θ, φ)A∗2(θ, φ) sin θdθdφ
∣∣∣∣√∫ 2π

0

∫ π
0

A1(θ, φ)A∗1(θ, φ) sin θdθdφ
√∫ 2π

0

∫ π
0

A2(θ, φ)A∗2(θ, φ) sin θdθdφ
(2)

In addition, Taga proposed the equation considering the distribution of incoming wave and cross polar-
ization power ratio (XPR) as follows [5]:

ρ3Dex=

∣∣∣∣∫ 2π
0

∫ π
0

(
XPR ·Eθ1E∗θ2Pθ + Eφ1E∗φ2Pφ

)
sin θdθdφ

∣∣∣∣√∫ 2π
0

∫ π
0

(
XPR·Eθ1E∗

θ1Pθ+Eφ1E∗
φ1Pφ
)
sin θdθdφ

√∫ 2π
0

∫ π
0

(
XPR·Eθ2E∗

θ2Pθ+Eφ2E∗
φ2Pφ
)
sin θdθdφ

(3)

where Pθ and Pφ are the angular density functions of incoming plane waves for the θ and φ components.
Eθk and Eφk (k=1, 2) are the θ and φ components of the complex electric field radiation pattern of each
antenna element.

In [6], Blanch et al. revealed that the equation of spatial correlation derived from radiation patterns
could be transformed using S-parameters as follows:
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ρspara =

√√√ ∣∣∣S ∗11S 12 + S ∗21S 22

∣∣∣(
1−( |S 11|2 + |S 21|2 ))(1−( |S 22|2 + |S 12|2 )) (4)

Spatial correlation is also calculated from a channel matrix H as follows [7]:

ρmatrix =
Rr(1, 2)√

Rr(1, 1)
√

Rr(2, 2)
, Rr = E[HHH] (5)

where E[·] and {·}H denote the ensemble average and the complex conjugate transpose, respectively.

3. Simulation-Based Evaluation of Each Correlation Coefficient
Spatial correlation for each equation is evaluated using a two-element dipole array and inverted-F

array, which were designed by CST Microwave Studio. Figure 1 shows the correlation coefficient for
each derivation method. Here, ρ2D and ρ3D are calculated using the radiation patterns of co-polarization.
Since only receiving positions are considered without antenna characteristics in ρbessel, the mutual cou-
pling effect is not included in it. In ρ2D, ρ3D, and ρspara, mutual coupling effect is considered, and the
correlation coefficients are less than ρbessel due to the radiation pattern distortion. Although these three
types of correlations have similar characteristics in narrow inter-element spacing, the characteristics does
not appear in wide inter-element spacing. Since three dimensional model is more accurate, ρ3D and ρspara

are appropriate to calculate correlation. Here, ρbessel, ρ2D, ρ3D, and ρspara can be applied when distribu-
tion of incoming wave is uniform. Then, the components of XPR is not included in those equations, and
ρ3D calculated from radiation patterns of co-polarization is equivalent to the characteristics for XPR = ∞.

The performances of (3) including the components of distribution of incoming wave and XPR are
shown in Fig. 2. Here, Gaussian and uniform distributions are assumed in the vertical and horizontal
planes, respectively (Fig. 2(a)). The equations of Pθ and Pφ are according to those in [5]. Figure 2(b)
shows ρ3Dex for the mean elevation angle m in the incoming wave with Gaussian distribution. Here,
the standard deviation σ of Gaussian distribution is 20◦ [9]. In this figure, although ρ3Dex becomes high
with the increase of m, ρspara cannot respond to the change. Figure 2(c) shows ρ3Dex under each XPR
environment for m=20◦ and σ=20◦. When cross polarization level of an antenna is large as inverted-
F antennas, ρ3Dex varies according to the XPR. Although ρ3Dex is broadly-applicable, Rayleigh fading
channel, which is generated when waves with random phase are received, is a condition for applying it.

Then, we examine free space propagation and Nakagami-Rice fading channel generated when waves
with identical phase are received. We confirmed that ρ3Dex was similar to ρ2D when uniform and Gaussian
distributions with small angular spread were assumed in the horizontal and vertical planes, respectively.
In this scenario, the dimension to be considered is reduced, and therefore two-dimensional channel model
is assumed for the investigation. This scenario is obtained by channel matrix H =

√
K/(K + 1)HD +√

1/(K + 1)HS . Here, K is the Rice factor, and HD is the channel matrix for direct wave. Here, it is
assumed that the inter-element spacing of Tx antennas is 1λ, and the array arrangement is parallel to that
of Rx antennas, as shown in Fig. 3(a). Then, HS represents a channel matrix for scattering wave given by
Kronecker model. The effects of radiation patterns and mutual coupling are included in this modeling.
Figure 3(b) shows the spatial correlation for each Rice factor K. In small K channel with many scattering
waves, ρmatrix is similar to ρ2D. However, large K increases the spatial correlation because direct wave is
dominant and incoming waves to two antenna elements are similar. Thus, spatial correlation adapting to
a changing environment can be calculated using channel matrix.

Finally, applicable conditions for each correlation formula are summarized in Table 1. Here, we
mention angular profile of incoming wave, inter-element spacing, XPR, and propagation channel as
components having an impact on spatial correlation coefficient (Fig. 4). The applicable conditions are
different according to correlation formulas. In Rayleigh fading environments, ρ3Dex properly evaluates
the spatial correlation, however, in the environments with strong direct waves, ρmatrix should be used for
the assessment.

4. Conclusions
This paper clarified the difference in the spatial correlations derived from Bessel function, radia-

tion patterns, S-parameters, and the channel matrix. From the results, this paper revealed that under
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Rayleigh fading channels, the spatial correlation was properly assessed by the equation based on the
three-dimensional radiation patterns (Eq. 3). Then, we demonstrated that for evaluating the correla-
tion under free space propagation and Nakagami-Rice fading channels in addition to Rayleigh fading
channels, the equation derived from the channel matrix (Eq. 5) should be used.

References
[1] R. G. Vaughan et al., IEEE Trans. Veh. Technol., vol. VT-36, no. 4, pp. 149-172, Nov. 1987.
[2] S. L. Loyka, Electron. Lett., vol. 35, no. 17, pp. 1421-1422, Aug. 1999.
[3] R. H. Clark, Bell Labs System Technical Journal, vol. 47, pp. 957-1000, July-August 1968.
[4] T. Takeuchi, et al., IEICE Trans. Commun. (Japanese Edition), vol. J67-B, no. 5, pp. 570-571, May 1984.
[5] T. Taga, IEICE Trans. Commun. (Japanese Edition), vol. J73-B-II, no. 12, pp. 883-895, Dec. 1990.
[6] S. Blanch, et al., IEE Electronics Letters, vol. 39, pp. 705-707, May 2003.
[7] K. Sakaguchi, et al., IEICE Trans. Commun., vol. E88-B, no. 7, pp. 3010-3019, July 2005.
[8] Y. Karasawa, Radio Propagation Fundamentals for Digital Mobile Communications, Coronasha, Tokyo,

2003 (in Japanese).

[9] K. Ogawa et al., IEICE Trans. Commun. (Japanese Edition), vol. J91-B, no.9, pp. 948-959, Sep. 2008.

(a) (b)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Inter-element spacing d/λ

ρ  
bessel

ρ  
2D

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Inter-element spacing d/λ

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 

ρ  
3D ρ  

sparaρ  
spara

ρ  
3D

ρ  
bessel

ρ  
2D

z
y

x

d

70.5 y
z

x

d

28.5

11
475

Unit [mm] Unit [mm]

Figure 1: Spatial correlation coefficients calculated from Bessel function, (1), (2) and (4) for a two-
element (a) dipole array and (b) inverted-F array, respectively.
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Figure 2: Spatial correlation coefficients for incoming waves with uniform distribution in the horizontal
plane and Gaussian distribution in the vertical plane. (a) Conceptual diagram of the target scenario, and
the correlations for incoming waves with various (b) elevation angles and (c) XPRs.

273



z

x
y

1λ

#2

#1
d

#2
#1

φ
x

Tx Rx

(a) (b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Inter-element spacing d/λ

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 

ρ  
2D ρ  

matrix

K=-100 dB

K=-10 dB

K=0 dB
K=5 dB

K=10 dB

Figure 3: Spatial correlation coefficients derived from channel matrix. (a) Target scenario and (b) the
correlation for each Rice factor.
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Figure 4: Components having an impact on spatial correlation coefficient.

Table 1: Applicable condition for each correlation coefficient. Here, ◦ and × mean that the components
(ii-1), (ii-2), and (iii) are considered and not considered in the equations, respectively.

Components having an impact on correlation in Fig. 4
Correlation (i) (ii-1) (ii-2) (iii) (iv)

ρbessel Uniform (horizontal plane) × ◦ × Rayleigh fading
Incoming waves are concentrated in the horizontal plane.

ρ2D Uniform (horizontal plane) ◦ ◦ × Rayleigh fading
Incoming waves are concentrated in the horizontal plane.

ρ3D Uniform ◦ ◦ × Rayleigh fading

ρspara Uniform ◦ ◦ × Rayleigh fading

ρ3Dex Applicable in any case ◦ ◦ ◦ Rayleigh fading

ρmatrix Applicable in any case ◦ ◦ ◦ Applicable in any case
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