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1 Introduction

For microstrip lines deposited on an inhomogeneous substrate, the expressions of potentials ( quasi-
TEM analyses ) or fields ( full-wave approaches ) in the substrate become more complicated than
the expressions in a homogeneous substrate. Quasi-TEM approximation has been used to study
the proximity effect of a substrate edge on the capacitance of a microstrip line [1], the capacitance
of two microstrip lines separated by a notch in the middle of the substrate [2], and the capacitance
of a stripline embedded in a layered medium with rectangular shape subdomains [3].

Method of lines has been developed to analyze the propagation properties of microstrip lines on
a substrate of finite extent, on a substrate with notches [4], and coplanar transmission lines on a
semiconductor substrate with continuous permittivity profiles [5]. Deriving the Green’s function in
a substrate with a piecewise constant function using conventional mode matching methods is very
laborious.

In this work, an eflicient mode matching technique is combined with an integral equation method
to study the propagation properties of a microstrip line on an inhomogeneous substrate of which
the permittivity profile can be a piecewise continuous function of the lateral coordinate. First,
the cigenmodes in each layer are obtained by solving a symmetric eigenvalue matrix equation.
Reflection matrices are defined across the interfaces between two contiguous layers. An integral
equation is then formulated to express the tangential electric field in terms of the current on the
strip surface. Galerkin’s method is finally applied to solve the integral equation for the propagation
constant.

2 Formulation

In Figure 1, we show the configuration of a microstrip line embedded in layer ( [ ) of a stratified
medium. The whole structure is uniform in the y direction. The dielectric constant in each layer is
a piecewise continuous function of z. and is independent of y and z. Two perfect electric conductor
walls are put at z = 0 and z = a to simplify the analysis.

Assume that the waves propagate in the y direction with a propagation constant &, then D,
and B; components in an inhomogeneous medium extending to infinity in the £z direction can be
expressed as a linear combination of a set of eigenmodes. These eigenmodes with their eigenvalues
can be derived in terms of a set of basis functions.

Next, solve the fields generated by line currents J(7) = §/8(z — 2,)6(z — z,)e™*w¥ and J(F) =
£16(z — 2,)8(z — z5)e'*¥¥ in layer (! ) of the stratified medium to obtain the Green’s function. The
tangential fields generated by a microstrip line embedded in layer ( { ) can thus be expressed as an
integral of the Green’s function and the current density distribution.
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Next, impose the boundary conditions that the tangential electric field vanishes on the strip
surface to obtain an integral equation with the surface current as the unknown variable. To apply
the Galerkin’s method. first choose a sel of basis functions to represent J (z) and J,(z) on the
strip surface. Substitute the current distribution in terms of these basis functions into the integral
equation, then take the inner product of another set of weighting functions with the resulting
equation to form a determinantal equation. The dispersion relation is obtained by solving the
determinantal equation.

3 Numerical Results

In Figure 2, we show the phase constant of a microstrip line on a segmented substrate. The results
with a homogeneous substrate [7] match reasonably well with our results in the high frequency
range. The deviation in the low frequency range is because we model a laterally closed structure
‘while the structure in [7] is laterally open.

In Figure 3, we show the phase constant of a microstrip line on a substrate with a parabolic
permittivity profile. The maximum or minimum dielectric constant, ¢,,, occurs at the middle of
the substrate. The curve with ¢, = 10 is that of a homogeneous substrate.

In Figure 4, we show the phase constant of a microstrip line on a substrate with a homogeneous
dielectric constant and a parabolic conductivity profile. The maximum or minimum conductivity,
O occurs at the middle of the substrate. The phase constant at the low frequency range increases
as the conductivity increases. The slow wave phenomenon is obvious for o = 100/m. The associated
attenuation constant in Figure 5 indicates that the loss is roughly proportional to the conductivity
at least in the range of 0.1 < g, < 10U0/m, and decreases at low frequencies.

4 Conclusions

We have applied a mode matching technigue and an integral equation method to study the propa-
gation properties of a microstrip line embedded in a stratified medium where the permittivity and
conductivity profiles in each layer can be continuous functions of the lateral coordinate. The phase
constant and the altenuation constant with various inhomogeneous profiles have been obtained by
this method. Slow wave phenomenon is also observed for structures with a lossy substrate.
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Figure 1: Geometrical configuration of a mi-

crostrip line embedded in a stratified medium

consisting of inhomogeneous layers.
Figure 2: Normalized phase constant of a mi-
crostrip line on a segmented substrate, e = 3
mm,d=1mm, w=1mm,*: results with a
homogeneous layer { b= 0 ) in [6]
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Flgutrt? 3h Normalized phase' constant of.a mi- Figure 5: Attenuation constant of a microstrip
;?;;i:ilz ne ?1111 a substrate with a parabolic per- Jine on a substrate with a parabolic conductiv-
y profile e.(z)/€, = 10+ 4(em — 10)z(a— ity profile. all the parameters are the same as in
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Figure 4: Normalized phase constant of a mi-
crostrip line on a substrate with a parabolic con-
ductivity profile a(z) = doyr(e — z)/a’, a =3
mm, d = 1 mm, w =1 mm.



