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Abstract 

 
Identification of shallowly buried landmines using ground 
penetrating radar (GPR) data is studied. Three kinds of 
features for target identification are proposed: (a) time 
interval between two pulses reflected from top and bottom 
sides of the objects, (b) normalized waveform correlation, and 
(c) dispersion of arrival time of target responses. Since the 
identification considered here is reduced to a classification 
problem of a desired target and other clutter objects, a 
support vector machine (SVM) is employed as a classifier. In 
order to evaluate the identification performance, we carry out 
a Monte Carlo simulation using dataset generated by a two- 
dimensional finite difference time domain (FDTD) method. 
The results show that good identification performance is 
obtained, and thus we can confirm that the proposed features 
are useful for discrimination of landmines from confusing 
clutter objects. 
 

1. INTRODUCTION 
 
Detection of small and shallowly buried landmines is a very 
challenging problem. Compared with the metal detector that 
is widely used for landmine detection, a ground penetrating 
radar (GPR) based approach would appear to offer many 
advantages, particularly for the detection of plastic landmines 
with little or no metal content [1]. However, reliability of the 
GPR system applied to detection of shallowly buried 
landmines is not sufficient because the GPR also receives 
returns from other subsurface objects such as rocks, tree roots, 
or metal fragments in the ground, which yields high levels of 
false alarms. Accordingly, development of highly reliable 
algorithms for target detection and identification that are 
applied to GPR data is highly desired [2]-[11].  

In general, a process of landmine detection is divided into 
two steps. The first step is the find stage, where all the various 
types of buried objects are located. The second stage, the 
identification stage, then differentiates landmines from stones 
and other objects using reference data prepared through prior 
experiments and/or simulations. In this research, we consider 

the identification stage. Thus, we assume that the location of a 
buried object is already known, but that it has not yet been 
identified.  

In the process of target identification, it is required to 
discriminate between targets and clutter objects using features 
extracted from GPR data and reference data. In general, the 
selection of the features plays a key part in target 
identification because the identification performance strongly 
depends on the features. Thus, we propose here three kinds of 
features for target identification: a time interval between two 
pulses reflected from top and bottom sides of the objects [12], 
a normalized waveform correlation [11], and a dispersion of 
arrival time of target responses [11]. Since the identification 
considered here is reduced to a classification problem of a 
desired target and other clutter objects, a support vector 
machine (SVM) [13] is employed as a classifier. In order to 
evaluate the identification performance, we carry out a Monte 
Carlo simulation using dataset generated by a two-
dimensional finite difference time domain (FDTD) method. 
The results show that good identification performance is 
obtained, and thus we can confirm that the proposed features 
are useful for discrimination of landmines from confusing 
clutter objects. 
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Fig. 1   Schematic of a GPR measurement system 
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2. FEATURES FOR TARGET IDENTIFICATION 
 
Figure 1 shows a typical configuration of the GPR measure-
ment system for identification of shallowly buried landmines 
under rough ground surface. The GPR measurements are 
made at multiple observation points above the rough ground 
surface using transmitting and receiving antenna pairs. Since 
the classification performance strongly depends on the 
features as mentioned in the Introduction, we employ here a 
three-dimensional feature vector whose elements are, time 
interval between two pulses reflected from top and bottom 
sides of the objects, normalized waveform correlation, and 
dispersion of arrival time of target responses. Since these 
features are detailed in References [11] and [12], we briefly 
explain about them in the following sub-sections. 

A.  Time Interval Associated with Target Thickness 
First, we roughly estimate a time resolution that is required in 
detecting object thickness from GPR data. Let us consider 
electromagnetic pulse reflection from a dielectric landmine-
like object of thickness d as shown in Fig. 2. Time interval 
between two pulses reflected from top and bottom sides of the 
object is expressed as 
 

( ) rcdT ε0/2=           (1) 
 
where rε  is the relative permittivity and 0c  is the speed of 
light in free space. Change of the thickness d∆ leads to the 
following time difference: 
 

( ) rcdT ε∆∆ 0/2=          (2) 
 
Since a relative permittivity of trinitrotoluene (TNT) is about 

0.3=rε [7], it can easily be found that the difference of the 
thickness cm0.1=d∆  corresponds to the time difference 

12.0=T∆ ns. This indicates that if the detection ability of the 
time difference is less than 0.12ns, then we can distinguish 
two objects that are more than 1.0cm different in thickness. 
Thus, we can expect that good identification performance will 
be achieved by employing the time interval T as one of the 
features.  

B.  Normalized Waveform Correlation 
Next, we introduce a concept of a matched filter that is 
commonly utilized for detecting a deterministic and known 

target signature included in signals with noise contamination. 
As mentioned in the Introduction, we assume that the location 
of the buried object is known, and target data, prepared 
through prior experiments and/or simulations, is available as 
reference data. Thus, we use the known target signature 

)(tsm  at position m as a template for target feature extraction. 
We define the following normalized correlation )(tCm  
between the measured GPR signal )(txm and the template 

)(tsm  as a measure of waveform similarity,  
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where mx̂  is the truncated part of )(txm  within the region of 
support )( tsm −τ . Note that the template )(tsm  is simply the 
target signature from the desired landmine, and it does not 
include ground surface reflection (the ground surface 
reflection can be reduced using the procedure described in 
[11]). Thus, if the measured GPR signal mx includes the target 
signature ,ms  then the maximum correlation max

mC  becomes 
close to unity at max

mtt = , which corresponds to the signal 
arrival time. In order to reduce the effect of ground surface 
reflection, we employ a mean value of the maximum 
correlation max

mC  defined by 
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as the second feature for target identification. 

C.  Dispersion of Arrival Time of Target Responses 
Next, we define a difference of signal arrival time mT  
between mx  and ms  as follows: 
 

arr
mmm ttT −= max            (7) 

 
where arr

mt  is a known arrival time of the signature ms . If the 
signal, mx , includes the target signature, ms , then the 
deviation of the arrival time, max

mt , does not vary significantly 
when the observation point, m, changes. We can therefore 
expect that variance of Tm is a good feature for target 
identification. We accordingly employ the variance of mT  
defined by  
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as the third feature for target identification. 
 

3. PERFORMANCE EVALUATION  
 
In Section 2, we have proposed three-dimensional feature 
vector for identification of buried landmines. It becomes, 
however, difficult to identify shallowly buried landmines 
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Fig. 2   Electromagnetic pulse reflection from a landmine-like object 

 of thickness d. 
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under rough ground surface, because ground surface clutters 
caused by surface roughness and target/surface interaction 
effects make significant contributions to measured target 
signals. Furthermore, low contrast in relative permittivity of 
the buried target and its surrounding soil makes the target 
signals weak and obscure. Thus, in order to examine the 
ability of this feature vector to identify the landmines when it 
is applied to realistic GPR data, we perform Monte Carlo 
simulations using a dataset that includes various GPR data 
samples generated by a two-dimensional FDTD method with 
a PML absorbing boundary condition. 

A.  Simulation Models 
The landmine model (target) and three kinds of confusing 
objects (clutter objects) are tabulated in Table 1. Rectangular 
object has the same size as the landmine model except for its 
height, and randomly deformed circular and elliptic cylinders 
have various shapes.  Relative permittivity of them is 

0.3=rε . The depths of the landmine as well as that of the 
confusing objects are varied between 2.0 cm and 6.0 cm. The 
number of each sample is 500. Surface roughness with 
Gaussian distributed height and slope is realized using the 
method proposed by Thorsos [14]. Figure 3 shows one of the 
realizations of surface roughness that we used for the present 
numerical simulations; for this case the root mean square 
(RMS) height and the correlation length of the surface 
roughness are set to be both 1.0cm. In our simulations we 
assume the surrounding dry soil with a relative dielectric 
constant of 0.4=rε and conductivity 0842.0=σ [S/m] is 
non-dispersive.  As the incident pulse, we use a monocycle 
pulse excited by Gaussian current whose parameters are 
chosen such that the incident pulse has most of its energy in 
the frequency band between 1GHz and 5GHz.  

B.  Classification Using SVM 
In this research, we employ a support vector machine (SVM) 
as a classifier. The SVM is a novel type of learning machine 
and represents a very promising tool for solving pattern 
classification. The classification procedure using the SVM 
consists of two stages, training and testing stages. In the first 
stage, we train the SVM using the training dataset. Training 
the SVM means mapping of the training data into a higher-
dimensional feature space, and finding the optimal hyperplane 
that separates hyper feature space into two classes. In the 
testing stage, unknown testing data samples are presented to 
the SVM and categorize them into two classes (target and 
clutter objects). In our simulation, we divided 500 data 
samples into 300 and 200 samples for training and testing, 
respectively (see Table 1). As the kernel function, we use the 
Gaussian kernel. 

C.  Performance Evaluation 
In order to check the identification performance, we employ 
receiver operating characteristic (ROC) curve that has been 

 
 
 

Table 1   Landmine model (target) and three kinds of confusing objects (rectangular objects and randomly deformed circular and elliptic cylinders) 
 

Type Shape Size Depth
d (cm)

Number of
samples

Landmine
model
(target)

(a)

(b)

(c)

r

W

H W = 6cm (top), 9cm (bottom)
H = 5cm = 1cm (top) + 4cm (bottom)
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(a) Rectangular
object.
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deformed

(b) circular
and

(c) elliptic
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     objects)

W

H W = 9cm,
H = 4cm

Training: 300
Testing: 200

Training: 300
Testing: 200

Training: 300
Testing: 200

Training: 300
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D

W

H

Mean size of deformed circular cylinders
D = 5cm
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( W, H ) = ( 9cm, 5cm )
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Fig. 3   One of the realizations of the rough ground surfaces used
for the numerical simulations. The root mean square (RMS) height
and the correlation length of the surface roughness are both 1.0 cm. 

International Symposium on Antennas and Propagation — ISAP 2006 3



widely used in evaluating performances of radar and sonar 
systems [15]. Before showing the results of performance 
evaluation, we briefly explain about the ROC curve. The 
ROC curve, that is a plot of the probability of detection (Pd) 
versus the probability of false alarm (Pf), is obtained by 
varying the detection threshold. Pd is calculated by taking the 
ratio of the number of detected targets to the total number of 
targets, where Pf is calculated by taking the ratio of the 
number of target declarations that are not true targets to the 
total number of false alarms. When we plot the ROC curve 
with Pf value as x-axis and Pd as y-axis, the ROC curve 
connects the top right point (Pd = Pf = 1) to bottom left point 
(Pd = Pf = 0) of the ROC space (see Fig. 4 as an example). 
When we adjust the threshold so as to get higher Pd value, Pf 
value increases at the same time due to a trade-off between 
detection rate and false alarm rate. Since a high detection rate 
with low false alarm rate, that is a desired property of the 
detector, corresponds to upper-left region in ROC space, the 
detector whose ROC curve is closer to the upper left corner 
has better performance.  
Figure 4 shows the ROC curves for testing dataset when the 
rme-height and correlation length are both 1.0cm. The solid 
line indicates the result of the SVM classifier with 3D feature 
vector, and the dashed line indicates the result of the matched 
filter detector that uses only the feature .

max
C  By comparing 

these two curves, we can see that the performance of the 
SVM classifier with 3D feature vector proposed here is 
significantly improved. This is due to the fact that the feature 
based on the time interval associated with target thickness is 
utilized effectively. From these results, we can confirm that 
the proposed 3D feature vector gives good performance for 
identification of buried landmines. 
 

4. CONCLUSIONS 
 
We have proposed the 3D feature vector for identification of 
shallowly buried landmines using GPR data, and have 

evaluated its identification performance. Three features are, a 
time interval between two pulses reflected from top and 
bottom sides of the objects, a normalized waveform 
correlation, and a dispersion of arrival time of target 
responses. In order to evaluate the identification performance, 
we have carried out a Monte Carlo simulation using dataset 
generated by a 2D-FDTD method. As the classifier, we 
employ the SVM with the Gaussian kernel. The results show 
that good identification performance is obtained, and thus we 
can confirm that the proposed 3D feature vector is useful for 
discrimination of landmines from confusing clutter objects. 
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