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Palkin E.A., Zaytseva N.A.
Moscow Institute of Physics and Technolo
Institutsky per. 9, Doldoprudny,Mosc.Reg.141700 RUSSIA(USSR)

A new class of single reflector antennas having a specific
stability in radiation patterms with respect to small changes
(deformations) of reflector surface and feed displacements is
investigated. The "stability" means that in the case of the
distortions above the deviations 1in energy radiation
distribution in peaks gain and sidelobes are sufficiently less
then those of usual parabolic antennas. In certain domain of
distortion values any deviations in radiation pattern of such
antennas are slightly dependent on the antenna system
disturbances.

The results of wave catastrophes theory [2,3] are the
basis for synthesis of such antenna systems . The soluticon of
problem involved is to choose a certain form of reflector that
supplies the radiation patterm described (at least in the main
part) by the special function of wave catastrophe (SWC) of
stable type. The list of stable type catastrophes
(eingularities) first has been published by V.I.Arnold and
R.Thom. Nowadays one can find it in numerous publications on
Catastrophes Theory (see for example [(1,6,7]).

The first step of our investigations is the well known
fact that radiation pattermn of any antenna system may be
presented by the following integral:

D(B,p) = C Icfexp[ik:@(x,y.e.tp)J*I(X.Y,e.tp)dxdy (1)

Here D is the radiation pattern of given antenna system in
polar occordinates, ® and I are the phase and the amplitude
funotions respectively, determined by the geometry and the
construction of antenna,G is some surface with respect to which
the functions @ and f can be determined (or established), K is
the wave number (K=2W/A) and € is the normalizing constant.

In case of single reflector antenna with point radiation
source (Fig.1) 5 1/
O(X,¥,8,9)= (2,-0(X,¥) )Z+x7+y" 1-Sinx (x*xCosp+y*S ing)-h(x,y ) *Cosh

£(X,¥,0,@)=1, (X, 3)*[(B-h(x,y))%+x%+y7 17 20z (x,7,8,0)
where h(X,y)is the reflector profile function, (x=0,y=0,2=2)
are the feed position coordinates, J.,are the components of
surface currents, induced by the primary field of radiation
source on surface M, f,,,is some slowly varying function (in A
scale), taking into account the radiation diagrams cf surface
currents.

Using unknown function h , we desire the phase function @
to coincide (up to normalizing constant 7 ) with universal
unfolding of 2-type stable singularity. It gives the following
equality:

KD(X,¥,8,0) = 7 F (E,,E,,A,@) + B(8,0) (2)
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Here FE is the universal unfolding gt,ﬁeand A, @ being the

internal and external variables respectively. The variables
51,52 are the functions of X.y and 8,9, while A,Q,9 are the

functions only 6 and f. For any values 8,0 and (X,y) < G
a(¢
1

det | ——— 1 #0
g (x ¥)
This condition supplies the s:mgu.larlty 2 to be the only
51ngular1ty of function ©® on G (it's possible for 2 to Lantaln
all subordinate singularities it comprises). When KR >> 1 ( R
is the ocharacteristic reflector size, or domain G '-'-‘ZLZE'J and
the solutions of following equations:

o0 6 @
- %989 =05  Fu (X7,8¢) =0 (3)

are fare from the boundaries of G for any given 8,¢ the main
part of integral (1) asymptotic is determined by the SWC of 2

singularity [2]:
-« T 3 ) x ¥
I (A, &) = [fexpliF_(E,,E,,A,Q)]dE,dE, (4)

< -
Here A and 3 are the external parameters normalized by 7 (see
(6) in example below). If the condition above is not true we
have to choose as universal unfolding that one of singularity
with restrictions (see [3,4]).

In a view of great number of singularities types the
analysis of equality (2) and the results followed seems to be
toc large for given article. Hence we'll restrict our
consideration by only one example. Let 2 be the elliptic
umbilic singularity D4. In this case FE has the following form

(we use a symmetrized nogmal Iogm of uglfog.ding [5,6]1):
Fpe (819820 oRo0hg) =B %E—1/3 Epth ™ (Bt A *EHAX &, (5)
Substituting (5) 1in -equality (2) and considering strong

directed radiation diagram (that is 6<<1), we can find the
follovung conditione giving rise to (2) :

€= X, o= ¥ _1
A1= Aq -y 'k 16 Cos @1, A= kz -1 k [8 Sin o], 8=0
and#in (4) * / * /
il 0/3 4 . 2! 3 . 1 3 e
Ag= 71777 Aus As= 7 Ass KB- Y RB (6)

and in addition we have the obvious expression for reflector
profile function h(x,y)

X +y‘2
h(x,y) = . + 1/2 (Z-K'p F-) (7)
2(z +k T FD-) 4
Ths parameters .*.01,3‘.."2 and A5 are arbitrary and we can use them

for the choice of angle radiation desired. An amount of

determines as the scale of diffraction pattern, described by SWC
(4), so as whole width of radiation diagram. Z;parameter in (7)
is analog to focus distance of reflector, and it should be
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determined in dependence of antenna size, so that the condition
(3) would be true.
Ir h3= 0, the diagram pattern ( as SWC structure [5,6])

has the main lobe of triangular form; and if |A| > 1, it has a
multilobes structure of triangular configuration with several
peaks gain.

Fig 2 shows some numeriocal results of reflector antenna
radiation pattermn modeling when the reflector profile is
determlned by the formula (7) with the following paramet¢r°

= 500, A w™ fom, R =1.8m; 8;= 1., ¥ = Hey 32272270,
Fig.2 represents some cuts trough radiation pattern for
different planes @=con3t. The triangular shape of radiation
pattern is obvious because the angle radiation dlstrlbutlon
does not change when @ is replaced by ¢ + 120 ° (the
corresponding plots coincide with each other). For comparison
the radiation pattern of parabolic reflector antenna of the
same size is presented there by dotted line. The main lobe
width by the level of -3 O0b is approximately the same of
parabolic antenna, but the sidelobes levels are 6-8 8b greater.

The results presented in Pig.3 illustrate the radiation
pattern stability of the antenna under consideration. Here one
can see the radiation patterms for the case of feed
displacements varying from A to 2A in Z-axis and from A to 5A
in ¥y axis. The sidelobes energy distribution of given antenna
is more stable then that one of parabolic antenna (dotted
line).

In conclusion we note that it is possible to consider not
only the common type stable finitely determinate singularities
Z but so the nonfinitely determinate singularities and the
singularities having another restrictions but those connected
with the boundaries of G (for example any symmetry of antenna).
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