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INTRODUCTION 

This paper presents a study of the radiation characteristics of arbitrary cross-section 
open-ended waveguides or narrow flare angle horns using a finite difference technique 
to predict the aperture fields. This enables the radiation patterns of horns with any 
arbrtrary cross-section to be computed. 

The radiation patterns from waveguides or horns wrth rectangular , circular or elliptical 
cross-section are obtained by a two part process [1] . First the aperture fields are 
computed by solving the modal propagation equation for the required geometry (which 
might need to be done by rteration ~ the waveguide is inhomogeneously filled). Secondly 
the radiation characteristics are computed by solving the radiation integral wrth the 
appropriate boundary condrtions. When the cross-section of the aperture is arbrtrary and 
does not fit one of the standard coordinate systems, an analytical equation for the mode 
functions cannot be derived and another technique must be used to obtain the aperture 
fields. The finrte difference technique is a suitable method that can be implemented wrth 
relative ease on computers. The technique is described here, together wrth examples of 
its use to predict ridged and cross shaped horns. 

FINITE DIFFERENCE TECHNIQUE 

The waveguide modes of an arbrtrary cross-section waveguide are the eigenfunctions and 
the eigenvalues of the two dimensional Helmholtz equation 

~<p(x.y) .I? <p(x,y) = 0 (1 ) 

where k, is the cut-off wavenumber and <p = E,(or HJ wrth the boundary condrtion <p = 0 
for TM modes (or aop/a n = 0 for TE modes). 

In the finrte difference technique, Equ.( 1) is solved at discrete paints in the waveguide. 
If a square mesh of side h is fitted in the waveguide cross-section, then the finrte 
difference replacement of Equ.( 1) is the matrix eigenvalue equation 

(A-1.)<p = B<p = 0 (2) 
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At each grid pOint, Fig. 1, a general five-point operator equation expresses the relationship 
between the fields at the grid point and the fields at surrounding points, 

(3) 

where the 'P's are the values of 'P(x,y) at the end of the corresponding arm of the 
operator and the coefficients b are the elements of matrix B . These depend on the 
location of node g in the mesh and on the orientation of the corresponding arm of the 
operator. 

Equation (3) can be used for dominant modes. For higher order modes, the problem 
needs to be reformulated as a posITive semi-definite matrix equation 

(4) 

where C = B T B . The coefficients of C are given by an algorIThm for a 13 point operator 
consisting of five overlaid 5 point operators [2J. The boundary condITions at the exact 
physical boundary can be satisfied by using a development of the basic finite difference 
scheme which has operators with unequal length arms to the grid [3J . 

RADIATION CHARACTERISTICS 

The eigenvalues are used to obtain the transverse electric and magnetic field components 
from the derivatives of the mode function. The electric field for TE modes is 

E = M [a a<p - a a",] 
t JI. Y ax x ay 

c 

(5) 

The fields for the other components take on similar forms. Accurate computation of the 
'P derivatives near the boundary requires the values of 'P at appropriate locations in the 
boundary. The far-field radiation characteristics are predicted by the standard vector 
Huygens formula [4 J using numerical integration of the transverse fields over the aperture. 

COMPUTER IMPLEMENTATION 

The technique outlined above has been implemented in a computer program which fITS 
a mesh to a spec~ied shape of waveguide and then ITeratively solves Equ. (4). The mesh 
fitting is straight forward in the inner region of the waveguide. Around the edges, it is 
complicated by the need to use mod~ied forms of Equ.(3) to take account of the 
appropriate boundary condITions. After the mesh has been established, ITeration is used 
to converge on the eigenvalues for the waveguide. The ITerations are stopped when the 
residuals left after substITuting the eigenvalues into Equ.(2) are less than 0.001. 

A typical starting mesh size of 13 by 13 is used. For most shapes of waveguide a final 
square mesh of 23 by 23 points has been found to be adequate. Larger meshes give 
potentially more accurate eigenvalues, but at the expensive of sign~icantly increased 
computer time. A typical waveguide takes between 200 and 1000 iterations to converge 
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to the required accuracy. Convergence in waveguides with re-entrant corners is not 
directly possible for TE modes. To overcome this problem it has been found necessary 
to insert more accurate trial field values. Symmetry in waveguides can be utilised to 
reduce the computational effort but then mixed boundary cond~ions must be used. 

RESULTS AND DISCUSSION 

The program was validated by comparison of the transverse fields and radiation patterns 
of rectangular and circular open-ended waveguides computed using the finite difference 
technique and computed in closed form. These gave results which were in good 
agreement with the analytical methods. 

A symmetric ridged horn and radiation patterns are shown in Fig. 2. The co-polar pattern 
and the cross-polar pattern are both computed in the 45° plane using the standard 
definition for horns. The wavelength in this and the other examples is a/2.25 where a 
is the maximum waveguide cross-section. Symmetry was not used in the computations of 
the fields in this example. In fact the fields are symmetrical about the axes even though 
the lines plotted in the sketch of the waveguide do not appear symmetrical. This is due 
to the way in which the ~erations proceed and the automatic values chosen for the 
contour lines. The technique is as easy to apply to non-symmetrical structures as is 
demonstrated in Fig. 3 which shows the fields and patterns for an asymmetric ridged 
horn. The effect of the asymmetry on the radiation pattern is to increase the cross-polar 
level in the 45° plane to -12 dB. 

A cross-guide, as shown in Fig. 4, radiating a TE mode. This has a field pattern and 
radiation characteristics which are similar to those of a circular waveguide. The peak 
cross-polar level is slightly higher due to the greater field curvature. The examples clearly 
demonstrate the potential of the finite difference technique and show that ~ is a powerful 
method of predicting the radiation patterns of arb~rary cross-section horns. 
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Pig 2 . Symmetrical ridged horn and pattern 
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Pig 3. Asymmetrical ridged horn and patteru 
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Pig 4, Cross ho r n and pattern 
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