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1. Introduction 
Recently, multiple input multiple output (MIMO) wireless communication systems have drawn a 

considerable attention of the wireless communication community. In contrast to conventional wireless 
systems, a MIMO system includes nT and nR number of antenna elements at a transmitter and a 
receiver respectively, which are both being greater than 1. The use of such a multiple antenna system 
both at the transmitter/receiver sites leads to increased transmission capacity. It has been shown that 
the average channel capacity divided by n, where n= min (nT, nR), approaches a nonzero constant. This 
constant is related to the average signal to noise ratio (SNR) if the fades between pairs of transmit and 
receive antenna elements are independent and identically distributed (i.i.d.) [1]. The assumption of the 
i.i.d. fading has been made in many works concerning estimations of the capacity of a Rayleigh fading 
channel with or without optimizing power transmission [1, 2]. It has to be noted that in real 
propagation environments the fades are not independent due to the finite spacing between antenna 
elements and because of the scattering angle spread [3, 4]. As the MIMO technology aims to serve a 
broad range of wireless communication systems starting from personal to wide area communication, 
with examples such as HIPERLAN II, IEEE 802.16 [5], 3GPP[6], the modeling of the MIMO 
channels requires considering a more general fading environment than the one described by the  
Rayleigh distribution. This paper addresses such a more general situation by assuming a Ricean fading 
channel, which can be characterized by different values of the Ricean K-factor.  

Our attention focuses on determining the input signal covariance at the transmitter that optimizes 
the capacity in both Rayleigh and Ricean cases and compare them with the non-optimized cases of 
beamforming and independent transmission. In order to properly carry out the intended investigations, 
our considerations begin by taking into account the Ricean K-factor while determining mutual 
information of a transmission channel. By assuming that the duration of each data stream is short 
enough so that the channel can be regarded as stationary during data transmission, the measure of 
mutual information should adequately represent channel capacity in this quasi-static fading 
environment. Having assuming this, we focus our attention on the mutual information changes as we 
vary the input signal covariance by adapting the signal power at the transmit antennas in order to 
maximize transmission capacity.  

The paper is structured as follows. In section 2 we introduce a MIMO channel model which 
includes a Ricean fading channel and explain the meaning of all the associated parameters. Having 
done this, in section 3 we present a solution for the maximum capacity by applying a method of 
Lagrange multiplier. Section 4 includes simulation results and discussion of the obtained capacity for 
different modes of transmission, as given in terms of bits per second per Hz., versus a function of 
K-factor and the transmit antenna cross correlation. Finally section 5 provides conclusions on the 
paper’s findings.     

2. MIMO channel model 
Our MIMO channel model is an extension of the model presented in [2, 4]. The new model 

assumes the Ricean case of transmission channel. Also it assumes the presence of correlation between 
antenna elements in the transmit array. The channel properties are represented by a matrix H, which is 
composed of a matrix HLOS representing the line of sight channel and a matrix HNLOS representing a 
non line of sight channel. When HLOS is equal to zero, H represents the Rayleigh fading channel. In 
almost all publications on MIMO systems HNLOS is modeled as an i.i.d. complex Gaussian random 
matrix. Here, to complete the information about our model we define the properties of the matrix HLOS. 
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In the case of the line of sight propagation, which takes place between two uniform linear arrays 
without scattering, HLOS depends on a distance between a transmitter and a receiver, the plane-wave 
direction of arrival (α) and the spacing between antenna elements at a transmitter and a receiver (dt 
and dr). As a result, the normalized covariance matrix of HLOS can be written as  
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where the symbol † means conjugate and transpose operation of matrix. The covariance matrix of HLOS 
can be simplified when the antenna element spacing in both arrays is taken as half-wavelength 
(dt=dr=λ/2). Under such assumption, the matrix depends only on the plane-wave direction of arrival. 
In particular when α is very small or close to 90 degrees all elements of the covariance matrix are 
approximately the same and equal to one. In this case, the matrix has rank of one. It means that every 
channel from each transmit antenna to each receive antenna is completely dependent. Assuming that at 
a given instant of time both transmitter and receiver perfectly know the channel [7], the mutual 
information (C) of MIMO system can be represented by (2):  

)det(log ††
2

NLOSNLOSLOSLOS HpQHpQHHIC Σ++=    (2) 

The derivation of this expression follows directly from [1] via inferring mutual independence 
between HLOS and HNLOS. In order to simplify further considerations, we assume that nt=nr=n. Also we 
assume that for the non line of sight channel, antenna correlations occur only at the transmitter end. 
The correlations are described by a covariance matrix (Σ). Both Σ and Q need to be normalized. This is 
done by introducing the following constraint: Tr{Σ}=Tr{ Q}=n , where Tr{} is trace operation of 
matrix and Q is a transmitted signal covariance matrix. By using a singular decomposition value 
technique, we can simplify (2) as shown in (3). 

)det(log2
NLOSLOS pQpQIC ΣΛ+Λ+=          (3) 

where p is the SNR per transmit antenna, ΛLOS is a diagonal eigenvalue matrix for a line of sight 
channel and ΛNLOS is a diagonal eigenvalue matrix of a non line of sight channel. Using the above 
assumptions and necessary derivations, the Ricean K-factor (K) can be derived and is given by (4). 
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3. Optimization  
In order to obtain the maximum information capacity of transmission, the transmitted signals have 

to be optimized at the transmitter. This can be done by considering the covariance matrix Q which has 
to take into account channel variations. We solve this problem using the method of Lagrange 
multiplier by maximizing (3) under the constraint that power is normalized: Tr{Q}=n. The optimizing 
equation is then written as 
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where qi, si, λi
LOS, λi

NLOS are the eiqenvalues of matrix Q, Σ, ΛLOS, ΛNLOS respectively and L is a 
Lagrange multiplier for power constraint. Here we do not show full derivations. Instead we provide 
the final solution, which is given as follows. 
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4. Simulation Results and Discussion 
In this section, we focus our considerations on the case of an n=2-element transmit and receive 

array MIMO system because of ease of interpreting the obtained results. In this case, the transmit 
antenna cross correlation is given by (s1-s2)/2. It becomes apparent that when the cross correlation is 
near zero both transmit antennas are almost independent. Here, we consider three modes of 
transmission according to the eigenvalue of matrix Q. The first mode represents independent 
transmission, which occurs when both transmit antennas send independent signals (q1=1, q2=1). In the 
second mode, called the beamforming transmission mode, the correlated antennas form a beam pattern 
(q1=2, q2=0). The third mode concerns the optimized transmission following the solution given in (6).  

Fig.1 presents the results for all the three modes of transmission as a function of transmit antenna 
cross correlation when K=0 and the rank of ΛLOS =1. This is the case of a Rayleigh fading channel. It 
can be seen that the optimized capacity is a non-monotonic function of antenna cross correlation. At 
high cross correlation the beamforming mode is very effective. In turn, transmission of multiple data 
streams (independent mode) is very effective at low cross correlation. However, both beamforming 
and independent modes are less effective for intermediate cross correlation levels, as compared with 
the optimized mode. Using beamforming transmission at low cross correlation or applying 
independent transmission at higher cross correlation is inefficient. One can see that switching at an 
appropriate cross correlation level (around 0.78 in this figure) from the beamforming transmission at 
high cross correlation to independent transmission at lower cross correlation can be a good strategy. 
However, if there are some errors in selecting appropriate cross correlation levels, the capacity can 
drop more than 25% in comparison with the optimized capacity. Another shortfall of this strategy is 
that the switching mechanism increases complexity at both transmitter and receiver ends. Therefore, 
the optimized transmission seems to be the best choice for the Rayleigh fading channel.    

The results shown in Fig.2 concern the Ricean fading channel as the factor K is increased from 0 
to 10. The results for the case of independent transmission mode show similar trends as those of Fig.1. 
However for the beamforming transmission mode, the capacity is not increased when cross correlation 
becomes high. The reason for this is due to the fact that in the Ricean fading channel with K=10, the 
amount of power in the line of sight channel is 10 times of that in the non line of sight channel. This 
assumption results in a strong correlation between signals at each receive antenna. As a result, the 
beam forming occurs even when the transmit antenna cross correlation is low. The results shown in 
Fig.2 reveal that the optimized transmission is still the best choice to maintain the highest capacity at 
all cross correlation levels. 

The results presented in Fig. 3 and 4, concern the case when the Ricean K-factor is equal to 1. One 
has to note that when K=1, the power in the line of sight channel is the same as in the non line of sight 
channel. This situation occurs in a real environment, for example in an indoor wireless communication 
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Fig.2. Comparison of mutual information for different 
mode of transmission as the function of transmit 
antenna cross correlation, rank of Λ��� =1, K=10.  

�

Fig.1. Comparison of mutual information for different 
mode of transmission as the function of transmit 
antenna cross correlation, rank of Λ��� =1, K=0. 
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situation when both the transmitter and the receiver are not obstructed but due to reflections the 
environment becomes rich in multipath. Fig. 3 reveals that the results for the three assumed modes of 
transmission are similar to those in Fig.1 but the results presented in Fig.4 show different trend. Here 
in Fig. 4, the rank of ΛLOS =2, which is the full rank of a 2x2 matrix. This means that the two line of 
sight channels at each receive antenna are fully independent. In this case, the channel features the line 
of sight components, which are uncorrelated. As seen, the beamforming transmission in this fading 
environment is inefficient. In turn, the independent transmission mode can achieve high capacity even 
at a high cross correlation level. At the same time, the optimized mode of transmission gains nearly the 
same capacity as independent transmission. This result indicates that for this case it is not necessary to 
use optimization because independent transmission achieves high capacity for all values of transmit 
cross correlation levels.   

5. Conclusions 
In this paper, we have shown how to calculate mutual information for a MIMO system operating 

under the assumption of Rayleigh and Ricean fading channels. The derived formulas have formed the 
basis for optimizing signals at the transmit end to achieve maximum transmission capacity. We have 
provided the solution to this optimization problem using a method of Lagrange multiplier. Our theory 
has been demonstrated in an example of a 2x2 array MIMO system, whose performance has been 
assessed via computer simulations. Three modes of operation of this MIMO system including 
independent, beamforming and optimized transmission have been considered. Our simulated results 
have shown that the optimized signal transmission achieves the highest capacity compared with the 
two remaining modes of transmission.   
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Fig.4. Comparison of mutual information for different 
mode of transmission as the function of transmit 
antenna cross correlation, rank of Λ��� =2, K=1. 
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Fig.3. Comparison of mutual information for different 
mode of transmission as the function of transmit 
antenna cross correlation, rank of Λ��� =1, K=1. 
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