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Abstract

The iterative method minimizing the cost function may be used for the reconstruction of a
dielectric object from the measured scattered fields. It is shown that N+1 data values are
sufficient to obtain a unique perminivity dismibution of the object discretized into N small
cells. Up to 3-cell object, equations derived from the formulation of the method of moments
show this condition explicitly. For the object cells more than three, the simulated annealing
algorithm with the Levenberg-Marquardr algorithm is used to obtain the global minimum of
the cost function which shows numerically that N+1 or more data are needed to reconstruct
the original distribution.

1. Introduction

The moment method inversion gives the reconstruction of the high-contrast dielectric object
but its size is limited[1]. The method of moments requifes the size of the discretized cell 1o
be smaller than 0.2 A//&[2], where A is the free space wavelength and & is the relative
dielectric constant of the object. This moment method inversion is shown to suffer from the
illposedness[3] in a sense that a small error in the scattered field causes a large error in the
polarization current. This illposedness may be identified as the exponentially decaying behavior
of the evanescent modes, which makes the small error in the scattered field grow
exponentially in the back propagating process of the inversion[4). Selecting only propagating
modes excluding the evanescent(for exponentially small) modes of the scattered fields, the
illposedness is stabilized[4] without the regularization[3] nor the pseudo-inversion[5].

For larger object to be reconstructed, an iterative algorithm minimizing the cost function is
used, where the cost function is defined as the squared magnitude of the difference between
the measured and calculated scattered fields from the assumed set of dielectric profile. For a
low contrast object, an iterative Born method is used where the lossless dielectric object of 2
AX2A is divided into 19X19 cells(i.e. 361 unknowns) and reconstructed by Wang and
Chew(7] from the scattered fields of 36 points with 8 different incidences which makes the
total number of 288 complex data or 576 real data. For a high-contrast large object,
simulated annealing algorithm is used to find the global minimum of the cost function, Caorsi
and Gragnani(7] used 128 data (16 field points X 4 incidences X 2) for the reconstruction
of 16 cell object and Gamnero and Pichot used 72 data (9 field points X 4 incidences X 2)
for 25 cell object[8]. They use much larger data than the unknowns. Ra and Park[9] show
that about the same number of data from 16 to 22 are used for reconstruction of 16 cell
object by employing only the effective propagating modes in the spectral domain.

It is interesting to ask a question what is the sufficient number of data ensuring a unique
reconstruction of the object by using the iterative method when the forward scattered field is
calculated by the method of moments.

2. Sufficient condition for the lossless N-cell object reconstruction

Discretizing the dielectric object into N small cells and applying the method of
moments[2), the scattered field 2/ may be obtained as
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where Ae,=e,-1, &, and w, are, respectively, the relative dielectric constant and the total
field at the center of the #th cell, g is the radius of the equivalent circular cell, and
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Here /) is the first order Bessel function and the .., is the distance between the field point
Pm and the center point of the mth cell p,.

Substituting #'(pw)=2 pm)- 1 (Ps)=tn-u, into eq. (1), one obtains the total field 2, in
terms of the incident fields z,’ as
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where
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and Hy? is the 1st order Hankel function of the 2nd kind.

The cost function f may be defined as the summation of the squared magnitude of the
difference bctween the measured scattering field(zs7) and the calculated scattering field(d) as
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where £ is the Ith frequency, L is the total number of used frequencies, ; is the ith
incident angle, [ is the total number of incident waves, m is the mith measurement point, M
is the total number of measurement points, and & is the assumed diclectric profile of /fah
iteration.

One may investigate the sufficient conditions for the equations (1) and (3) or equivalently
eq. (5) to have a unique solution of Ae, by making Fy,=0, since 2 and 2’ in eq. (5)
corresponds to z/' and SNt A Enttn Do in eq. (1), respectively, when the measured field 2
equals to the exact scatiered field ¢ in the ideal noiseless situation.

For one-cell object of lossless dielectric, i.e., N=1 and Ag; is real, eq. (1) and (3) give

ué = AEluiDZI/ Cll or

de{ a;Re(u3) — ayIm(23) — a3} + jdey{ ayRe(u3) +a;1m(23)} (6)
=—Re(u3) +ja,—jIm(u5) .

which yields two real and imaginary equations, relating the complex scattered field # at one
field point and Ac¢j where the real coefficients, g; j=1, 2, 3, 4, are functions of Az and
the distance berween the object cell and the field point p2;. Real and imaginary parts of eq.
(6) give two equations for Ag; as a function of Re(us) and Im(z7). Elimination of either
one of Re(xs) or Im(w) gives the 2nd order equation for Ag; and both values of Re(wz)
and Im(zs) are needed for a unique solution of Asj.
For the lossless two-cell object,
bIASIAE? + b’)AEl + b3A52 + b4= 0 (7)

may be obtained similarly from eq (1) and (3), where the coefficients &; are complex and
given by b= ayi'+ @' — B, b= amu'— Bus’, by=as'— Brus, by=—us, where
@; and B; are functions of the geometry of the measurement and the cell distribution, u'
and 2 are incident waves at the cell 1 and 2, respectively, and #; is the measured scattered
fields at p3. Real and imaginary parts of eq. (7), give a hyperbolic equation for Ag; versus
Acegz, respectively, and these two hyperbolic equations yield two sets of solutions. For a
unique determination of Ag; and Agz, one more hyperbolic equation is needed and may be
obtained from the measurement of the scattered field at another point.
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For the lossless three-cell object, similar derivation yields
CldEldé'gAEg + CQASIAEQ + ngé'gdss + C4A€2AE3 + Csdé‘l +CBAEZ + C7AEg +cy= 0. (8)
The real part of eq. (8) gives

Re(cy)dede; + Re(cs)de) 4 Re( c5) de, + Rel cg) 9
Re(c|)de de; + Re(c3)de, +Relcy)de, + Recq) ©)

and substitution of eq. (9) into the imaginary part of eq. (8) gives
dldE%AEg + dgAE:i!AEZ + dgdé‘ld&'g +d4d€1d52 + dsAE'I) + dsdEg + d7AEl +dsd€2 + dg =0. (10)

A€3='—

From the measurement of the scattered field at another point, two more equations like eq.
(10) are generated from the real and the imaginary part of one complex equation. Numerical
calculation, as shown in Fig. 1, for three cells of 0.06 1 X0.06 4 size located at (-0.03
4,-0.031), (0031,-0.034), and (-0.03 1,003 1) and the scattered fields at two points, (2
A,0) and (-24,0), shows a unique solution at Aeg;=6.0 and Ae,=6.0 crossing by 3
hyperbolic curves, where A is the free space wavelength and the values of Ag; and Ae
are varied up 10 100. Ag; is then obtained from eq. (9). This shows that one needs
two-point scattered fields, i.e., four real data for 3 unknowns, Ae;, Aegy and Acgy

For more cell problems than three, an iterative method using the hybrid algorithm
combining the simulated annealing algorithm and the Levenberg-Marquardt algorithm[9)] is
used for finding the global minimum of the cost function defined in eq. (5). One may
confirm the analytic solutions in equations from (6) to (8) by plotting the cost functions in
Figs. 1, 2, and 3. Fig. 2 shows that two global minima for &; are generated by one dara,
i.e., only the real part of 3’ at one point. A unique value of 10 becomes the global
minimum from 2 darta, i.e., the real and the imaginary values of ¢ at one point for one-cell
problem. For the two-cell problem, multiple minima occur, as shown in the inverted
logarithmic plot of Fig. 3(a), if one utilizes only the real part of one point scattered field. A
unique minimum occurs as in Fig. 3(b) if 3 data , i.e., one complex field value and one real
part of another field are used. Numerical calculations up to 16 cell problems are shown in
table 1, all of which show that one needs N+1 data for a unique reconstruction of N-cell
lossless object. The final value of the cost function are less than 10™% and the root mean

square error of the reconstructed permittivities are less than 10”", which shows the
numerical stability and its convergence.
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Table 1 Number of data versus the number of unknowns

# of cells| # ofﬁse?ggered # (ﬁ)élgcggteared j Reconstruction RMSE mlné?sl:nf‘uxg{::)ens
T 1 1 2 2.03e-16 7.70e-32

2 | 2 ! 3 ' 6.10e-16 1.41e-32

3 2 | 4 241e-16 2.55¢-34

4 3 [ 5 4.56e-16 9.00e-33

6 | 4 7 1.33e-14 1.25¢-32

9 | 5 10 1.14e-12 4.72e-32

12 7 13 8.03e-11 7.19e-30

16 | 9 17 1.29e-11 6.59¢-31
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Fig. 1 Numerical solution of & and & Fig. 2 Cost functions generated from
from two point field values for Re[z)(] data) and 2/ (2 data)
three-cell reconstruction

Fig. 3 (a) Mutiple minima of the cost Fig. 3 (b) Single global minimum from
function from 1 data of Re[z/] 3 data for 2-cell reconstruction
for 2-cell reconstruction
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