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1. INTRODUCTION

The amplitude comparison monopulse employs two overlapping
patterns that are squinted by an angle g., on either side of the
boresight direction. The pattern throu%h which the power is
transmitted to the target is called the sum pattern and is obtained
by transmitting in-phase power thrcugh both the squinted beams. For
angular tracking, the reflected power from the target is received
through a difference mode pattern which is obtained by combining the
signals from the squinted beams out of phase [1].

The slope of the difference pattern normally determines the
angular accuracy of tracking. However, in view of the AGC action [2]
either the slope-sum ratio (also known as the Difference Mode angular
sensitivity, DMAS) or slope gain product i1s taken as a performance
index for optimisation. Often, the sum mode directivity is also
considered for optimisation if the target range is of interest.

The optimisation of performance indices with constraints only on
the sum pattern sidelobes will often yield a difference mode pattern
with very large sidelobes. This may lead to increased noise in the
difference channel. Hence, the performance maximisation in monopulse
systems have to be carried out with specific constraints on both the
sum and difference mode sidelobes. The sidelobe levels are normally
expressed, as a fraction of the sum mode radiation peak.

This paper describes a numerical formulation using a
multivariable search method for optimising the performance indices of
the monopulse arrays with constraints on sum and difference mode
sidelobe levels. The problem of constraining the sidelobe levels has
been tackled by using a penalty method called Created Response
Surface Technique (CRST). This method converts the constrained
optimisation problem into a series of unconstrained ones. Numerical
examples have been worked out to illustrate the application.

2. FORMULATION
2.1 Performance Indices:

The sum mode pattern of an N-element symmetrical array of

progressively phased elements is given by [2]

M
(@) = 281, + 42 Ii[cos(‘incos(Zi).cos(jBxisin@sq)] (1)
i=1

where I; and x; are the currants and positions of the ith

element.& is a switching function, being 1 for arrays with odd number
of elements and 0 for even number of elements.
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The sum mode directivity can be obtained as

2
12(2) |
max
D.= ——
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S 52(¢)singdp (2)

0
The slope-sum ratio or DMAS is given by

M
43 I.Bx;sin(Bx;:sin@. )
! in %F 1 JB i sq

M
g=Tl/2 jBxM[2£IO + f—zl Ij cos(px;sindg,)]
(3)

where xy is the disFance of the last element from the
centre of the array and /\(¢@) is the slope of the difference mode
pattern.
2.2 Sidelobe level constraint and modified objective function

Each sidelobe is constrained to be less than a given value.
Mathematically,

b (T, X0e: P Sy v p= 1,2,...,m (4)

p L4
where m is the number of sidelobes, is the actual level of the pth
sidelobe and S, is its constraint vdlue. For this a penalty method
viz. CRST is J%ed. In this method, a new objective function is
defined as

M
G_=‘GO+‘§R_>__ (%—Sp)z (5)
i=1

G, is the performance index to be maximised.

where R is a positive constant whose initial value is normally taken
as unity, & 1is a switching function, being 1 when the constraint is
violated and 0 when not. Thus the penalties are levied only when
the sidelobe constraints are violated. The procedure now consists of
carrying out a minimisation of egn. {(5). The value of R is increased
by a constant factor and with the solution of the previous iteration
as the starting point, (5) is minimised again. This iteration is
carried out till no further reduction of (5) is possible. It can
easily be verified that when the constraints are all satisfied the
objectivefunction value § will be independent of the penalty. Thus
this method converts the original constrained problem into a series
of unconstrained ones, with each iteration descending down a created
response surface [3].

The penalty method described above has fuzed the directivity and
the constraint expressions into one. There is no explicit expression
available for the sidelobe level and hence it is not possible to
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evaluate its derivatives with respect to the parameters of
minimisation. Hence, a search method, namely, the simplex method of
Nelder and Mead [4] 1is used. This method is comparable in speed for
this class of objective functions to the derivative methods while
possessing a distinct advantage of warranting no information about
the derivatives of the objective function. The simplex method sets
up n+l” points called simplex in an n-dimensional space. It gropes
towards the minimum by flipping or contracting the simplex. The
logic used is based on an evaluation of the function at each corner
of the simplex. It may be noted here that the simplex method is
intrinsically more resistant to convergence to local minimum than
most other methods by virtue of its having (n+l) starting points,
with the result that the probability of one them being close to the
global minimum is higher.
3. NUMERICAL EXAMPLES AND DISCUSSIONS

Several examples have been worked out to check the validity of
the formulation. Only a few are reported here. A 2l-element half-
wavelength spaced array has been optimised-though the method 1s
equally appllcable to unequally spaced arays-for squint angles of 1°-
4° in steps of 1°. A constraint of 0.2 (-13.9794 db) has been placed
both on the sum and diff. mode sidelobes. First, the DMAS of the
monopulse array has been considered as a performance index to be
maximised. The currents in the individual elements are varied. The
results are included in Table I. The table also includes the
computed Dy, Dy and slope gain product at the optlmum DMAS point.
The results corroborate the well-known facts that DMAS increases with
increasing squlnt angle while the slope-gain product is optimum
around (Z This squint angle, as is to be expected is around
half the geam width of a 2l-element equally spaced equally excited
(6.37°).

Table I also includes, the results of optimising the DMAS at

=3® but with constraints of 0.1 (-20 db) and 0.05 (-26.02 db) on
tﬁg sum and difference mode sidelobes. It is clear from the table
that the DMAS decreases with increasing severity of the sidelobe
constraints.

The optimisation of Dg has also been performed for ¢ =3 with
the sidelobe constraints of 0.2, 0.1 and 0.05. The resglts are
included in Table-II.

It is apparent from the results in Tables I and II that there
exists a certain amount of trade off between DMAS and Dg. However,
when the sidelobe constraints are severe, the DMAS and Dg
optimisation yield nearly the same results.

The slope gain product optimisation has also been performed by
including the squint angle as a variable. It has been found that the
optimum value of the squint angle, for a sidelobe constraint of 0.2,
has been 2.82° The optimum squint angle increased to 2.86° when
the sidelobe constralnt is increased to 0.1.

—1137-



REFERENCES
(1] RHODES, D.R., "Introduction to Monopulse", Mcgraw Hill
Book Co., New York, 1959.
(2] MA, M.T., "Theory and Application of Antenna Arrays", Wiley,
New York, 1974.
(3] BALAKRISHNAN N., P.K. MURTHY and S. RAMAKRISHNA, " Synthesis of
Antenna Arrays with Spatial and Excitation Constraints ", IEEE Trans.
on Antennas and Propagation, vol. AP-27, pp.690-696, 1979.
(4] NELDER, J.A. AND R. MEAD, " A Simplex method for function
minimization", Com. J., vol. 7, pp.308-314, 1965.

TABLE-T
DMAS optimisation of 21-element half-wavelength-spaced array

@ sidelobe optimum computed camputed slope-gain

sq constraint DMAS Dg Dg product

1 0.2 0.2268 19.2437 9.8456 4.3929

2 0.2 0.4475 17.9907 12.0032 8.0514

3 0.2 0.7107 13.4070 11.9125 9.5279

4 0.2 0.8682 8.8177 11.8978 7.6559
TABLE-IT

Optimisation of . sum mode directivity Dg for a 21-element half
wavelength spaced array at ¢sq=3°.

Sidelobe Optimum computed computed slope-gain

constraint Dg DMAS D3 Product
0.2 14.0068 0.6029 12.2962 8.4452
0.1 13.8558 0.5254 12.2444 7.2811
0.05 13.4373 0.4599 12.1031 6.1792
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