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Abstract—Antenna current optimization is used to determine
optimal currents in the antenna design region. The currents
provide understanding, physical bounds, and figures of merits
for antenna designs. The problem is formulated as a convex
optimization problem expressed in the currents on the antenna
structure. These convex optimization problems are solved with
a computational cost comparable to a Method of Moments
(MoM) solution for an antenna in the same geometry. In this
presentation, antenna current optimization and stored energy
are reviewed. Numerical results for maximization of the gain
to Q-factor quotient and minimization of the Q-factor for
prescribed radiated fields are presented.

Index Terms—stored energy, physical bounds, Q-factor

1. Introduction

Design of small antennas is challenging because fun-
damental physics restricts the antenna performance [1–4].
Physical bounds express the trade-off between antenna per-
formance and antenna size. The physical bounds on the Q-
factor are determined from the stored energy around the
antenna. The classical approach in [1, 5, 6] is based on
calculations of the stored energy using mode expansions and
gives expressions for the lower bound on the Q-factor for
spherical geometries. Several generalizations of the bounds
to arbitrary shaped geometries have been presented in the
last years [7–17].

Optimization of the antenna currents is a general method-
ology to analyze and determine bounds on antennas [12,
13, 18]. The Q-factor is evaluated from the stored energy
expressed in the current density [10]. The expressions are
implemented using frequency differentiation of the method
of moments (MoM) impedance matrix for the free space
case [13, 19, 20]. Optimization of the current density on the
antenna is formulated as a convex optimization problem and
can hence be solved efficiently [13, 18]. Antenna parameters
based on combinations of quadratic forms, such as the stored
energy and radiated power, linear forms, such as near- and
far fields and induced currents, and norms are used to
formulate convex optimization problems relevant for specific
antenna problems [13, 18].

2. Antenna current optimization

Antennas are often embedded into devices such as mobile
phones and sensors, see Fig. 1a. The device structure Ω is
divided into two regions; an antenna region ΩA ⊂ Ω and the
remaining part ΩG = Ω \ΩA. We assume that the antenna
designer can specify the shape of the metal and dielectrics
in the antenna region ΩA. The electromagnetic properties
of the remaining region ΩG = Ω \ ΩA are assumed to be
fixed. The current density JA in ΩA is controllable and the
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Fig. 1. Device geometry with a region Ω with current density J , (top)
with a device and (bottom) the numerical approximation with local basis
functions. It is assumed that the currents JA can be controlled in the
antenna region ΩA. The currents JG in ΩG = Ω \ ΩA are induced
by the currents JA, see also [18].

current density JG in ΩG is induced by JA. The optimal
current distribution is determined from the solution of an
optimization problem expressed in the currents [13, 18, 21].

For simplicity, the analysis is restricted to induced currents
on a PEC ground plane. The induced currents depend
linearly on the currents in the antenna region, and we use
the electric field integral equation (EFIE) with impedance
matrix Z = R+ jX to determine this relation [13, 18, 21](
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The second row gives the equation

ZGAIA + ZGGIG = CI = 0 (2)

which is included as a constraint in the convex optimization
problems. In the decomposition of the basis functions into
its antenna, IA, and ground plane, IG, parts, we assign basis
functions with support in both ΩA and ΩG to the antenna
part IA, see Fig. 1.

The MoM approximation of the stored energies [18] can
be written as
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for the stored electric energy and
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for the stored magnetic energy, where the electric Xe,
and magnetic Xm, reactance matrices are introduced and
the superscript H denotes the Hermitian transpose. The
expressions (3) and (4) are identical to the stored energy
expression (for surface current densities and free space) [10,
22], see also [20, 23]. It is noted that the computations of
the reactance matrices only require minor modifications of
existing MoM codes.
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The constraint CI = 0 in (2) is included in the G/Q op-
timization problem [13, 18] giving the convex optimization
problem

minimize w

subject to IHXeI ≤ w,
IHXmI ≤ w,
FI = −j,
CI = 0

(5)

where F denotes the far-field matrix [13, 18]. This opti-
mization problem is easily solved using e.g., CVX [24] and
provide upper bounds on G/Q for arbitrary shaped antenna
and ground plane regions [13, 21].

There are many possible antenna current optimization
formulations. The case with maximization of G/Q leads to
minimization of the stored energy for a fixed radiated field
in one direction (5). The generalization to antennas with
directivity D ≥ D0 is obtained by addition of a constraint
of the total radiated power. The stored energy can also be
minimized for a desired radiated field or by projection of
the radiated field on the desired far field [13]. The case
with antennas embedded in a lossy background media is
very different as there is no far field in the lossy case. It
is however simple to instead include constraints on the near
field [25]. It is also possible to impose constraints on the
sidelobe level or radiation pattern in some directions similar
to the cases in array synthesis [26].

3. Conclusions

Antenna current optimization can be used for arbitrary
shaped antenna regions. In this paper, we focus on the case
with antennas integrated with a PEC ground plane [13, 18,
21]. Generalization to antennas embedded in lossy media is
considered in [25] and antennas above infinite ground planes
in [27]. Geometries filled with arbitrary inhomogeneous ma-
terials are analyzed using stored energy based on state-space
models. Combinations of electric and magnetic currents can
also be analyzed [14–16]. Optimal antenna designs are e.g.,
investigated in [8, 21, 28–30].

Acknowledgment

The support of the Swedish foundation for strategic re-
search is gratefully acknowledged.

References

[1] L. J. Chu, “Physical limitations of omnidirectional antennas,” J. Appl.
Phys., vol. 19, pp. 1163–1175, 1948.

[2] J. Volakis, C. C. Chen, and K. Fujimoto, Small Antennas: Miniatur-
ization Techniques & Applications. New York: McGraw-Hill, 2010.

[3] M. Gustafsson, D. Tayli, and M. Cismasu, Physical bounds of anten-
nas. Springer-Verlag, 2015, pp. 1–32.
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