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1 Introduction

Many problems in a broad class of engineering and scientific disciplines such
as signal processing, control, and system identification, lead to the solution of
systems of the following form,

y=Az +¢ (1)

where y is the m-dimensional observation vector, A = [a;j] is the real coefficient
matrix, z is the n-dimensional vector of unknowns, and ¢ is a corrupting noise.
In many applications and under some assumptions it has been shown that the
ordinary/penalized Least Squares Estimator (LSE) gives a good solution to
the problem. But in some cases where these assumptions are no more realistic
we seek more robust methods. The least squares estimator is a solution to
the minimization problem

M

min{E(z) = > (% - y1)’}, (2)

=1

where y; and ¥ are respectively the observed and calculated values of the
profile y. And it is well known that it is optimal if the data are Gaussian
distributed. Moreover, if the number of unknowns to be determined is very
large, the results might be unsatisfactory even under Gaussian conditions due
to the excessive matrix operations. In this investigation we show the results of
using unsupervised artificial neural networks to solve such inverse problems
with particular application to the reconstruction of 2D distribution of the
energy function of electromagnetic waves. The objective of the reconstruction
is to estimate the direction of arrival (DOA) of an electromagnetic wave [1].

2 Neural Network Approach to Linear Inverse Problems

From a functionality point of view, artificial neural networks can be classified
into supervised and unsupervised networks. The former require a learning
set that consists of examples of the desired input-output mapping to set the
connections weights. This process requires also a definite design; that is,
the number of layers, the number of units in each layer, and a well defined
architecture of to determine the disposition of the different layers and units.
In the contrary, the second class known as unsupervised networks, do not
need any examples of the desired input-output; indeed, only raw input data
are given. And the network should look for irregularities in the data on the
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basis of which it can proceed towards the minimization of the energy function.
The minimum of the latter corresponds to the optimal solution of the inverse
problem. Hence, the adequate choice of this energy function is the key step
into the design of an efficient network and this design widely known to be task
dependent [2].

In the present application the number of parameters to be determined
greatly exceeds the number of observations and the solution can only be es-
timated by constrained fitting to the data. The constraint consists in adding
some additional information to restrict the domain of solutions. Explicitly, a
solution that fits with observations and satisfies and additional constraint can
be obtained by minimizing the following function

E(z) = min ip(e;) + ad(z). (3)

i=1

p() is a suitable convex function and

&=y - y,
is the residual in which 3 = A2 and y is the observed quantity. The functional
®(z) explicitly expresses the constraint, e.g, smoothness of the profile y and
« is a tradeoff to balance between this smoothness and the fitness with the
observations expressed by the first term of the right side in Eq.(3), often known
as the error term. The neural network thus ﬁuds a solution by iteratively

smoothing the above energy function.
Using the steepest gradient algorithm

OFE(x)
= A 4
T T+ p Fr (4)
and taking a particular form of p as
ple) = 1 ln(cosh<§.)), (5)
we find:
6,‘(1‘) = Za,-j:v,-—y,- i= 1,...m (6)
j=1
m
VE(TJ) = Za;jg(e;) J =1,...n (7)
i=1
A.’L‘j = —/,LJ'VE(.'L'_,') (8)
) = 3+ Az (9)
where
gle:) = B tanh(5) (10)

Equations (6)-(10) define the architecture of the network. This architecture
can be implemented by a Hopfield-like three layers network. The connections’
weights are fixed and are given by «;, the coefficients of the matrix A. p;’
are the gain in the gradient algorithm and can be fixed to a relatively small
positive constant, while ¢ and 4 should be adequately chosen and their choice
is investigated here.



Figure 1: Reconstruction of two sources over an area of 300x300 kin? divided into
100x100 pixels.

3 Results

We applied the proposed network to the ground-based direction finding for
magnetospheric VLF/ELF radio waves such we try to estimate the energy
distribution of those waves at the ionosphere from observation of the wave
electromagnetic ficld on the ground. We performed the reconstruction for
simulated and actually observed data for one source and two sources distribu-
tions. The DOA of the wave is determined by seeking the maximum/maxima
of the distribution where each maximum correspond to an independent source
at the the wave exit region. Figure 1 shows the reconstruction of two sources
from actually observed data over a reconstruction area of 300x300 kin*, 80
km above the ground. As we can see, the whole distribution is not recon-
structed because the sources are too broad. To this end, we should widen
the reconstruction area and increase the number of pixels. Figure 2 shows
2D gray-scaled images of the the reconstruction from the same data over a
reconstruction area 500x500 km?.

4 Conclusion

In this research we have shown by means of computer simulation and real
observed data that the unsupervised ANN can be used to solve ill-posed prob-
lems. The ANN offered the advantage to not impose any special assumption
neither on the data nor on the parameters in one hand, and do not inquire
excessive matrix operations in the other hand. These are two key advantages
to handle large dimensioned and ill-determined systems, such as the inversion
of electromagnetic data for the direction finding of magnetospheric VLF/ELF
radio waves.



INIT, PATT. IT:0 RMS5:18.9 IT:50 RMS:9.4

IT:100 RMS:7,1 IT:150 RMS:5.7 IT:200 RMS:d.6

IT:250 Ri1S:4.0 IT:300 RMS:3.6 IT:350 RMS: 2.4

IT:400 RMS:3.3

Figure 2: Reconstruction of two source distribution from observed data shown at
different iterations (IT) over an area of 500x500km? divided into 120x120 pixels.
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