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Abstract- The guided modes supported in a coupled two-

parallel post-wall waveguides are analyzed by using a coupled-
mode theory for coupled two-dimensional photonic crystal wave 
guides. The coupled-mode equations, which govern the evolution 
of the modal amplitude of individual post-wall waveguides, are 
derived in self-contained way on the basis of eigenmode fields of 
each single waveguide in isolation. Numerical examples show that 
for various configurations of post-walls, the solutions of the 
coupled-mode equations are in very close agreement with those 
obtained by the rigorous numerical analysis.  

I. INTRODUCTION 

Post-wall waveguides [1], also called laminated waveguides 
[2] or substrate integrated waveguides [3], have received a 
growing attention because of their promising applications to 
planar circuit components operating in the microwave and 
millimeter wave frequency range. The modal properties of 
post-wall waveguides have been extensively investigated in 
the past years using various numerical or analytical techniques 
[1-5]. A number of components based on post-wall wave-
guides have been also proposed and demonstrated, such as 
filters, couplers, and slot array antennas. 

The post-wall waveguides are integrated waveguide-like 
structures composed of periodic rows of circular metallic posts 
in a grounded dielectric substrate. The structures are quite 
similar to those of two-dimensional photonic crystal wave-
guides [6] consisting of layered periodic arrays of circular 
metallic cylinders with infinite length. Taking into account 
this similarity, we have recently proposed [7] a novel 
analytical model of post-wall waveguides based on the model 
of two-dimensional photonic crystal waveguides. 

In this paper, we shall use the proposed model to analyze a 
coupled two-parallel post-wall waveguides which is a basic 
component to be used for a directional coupler. The coupled-
mode theory, which has been developed [8] for dealing with 
coupled two-dimensional photonic crystal waveguides, is 
reformulated for the post-wall waveguide structures. The 
coupled-mode equations, which describe the evolution of the 
modal amplitude of individual post-wall waveguides, are 
derived in self-contained way on the basis of the eigenmode 
fields of each single waveguide in isolation. Numerical 
examples show that for various configurations of post-walls, 
the solutions of the coupled-mode equations are in very close 
agreement with those obtained by the rigorous numerical 
analysis. 

II. FORMULATION OF THE PROBLEM 

The post-wall waveguide, as illustrated in Fig. 1, is 
composed of periodic arrays of conducting circular posts 
embedded in a dielectric substrate that connect two parallel 
conducting plates separated by a distance d. The radius of the 
posts is r, the pitch of the periodic arrangement of posts in the 
z-direction is h, and the material constants of the dielectric 
substrate are sε  and 0µ . Although the post arrays in both sides 
may be N-layered, Fig. 1 shows the structure formed by a 
single layer array. The waveguide width in the x direction is 
defined by the separation distance w between the two 
innermost post arrays. Since the substrate is very thin ( d λ� ), 
the electric and magnetic fields are uniform ( 0y∂ ∂ = ) in the 
y direction. Hence this periodic waveguide is quite similar to a 
two-dimensional photonic crystal waveguide [6] formed by 
parallel circular rods which are infinitely long in the y 
direction.  

The transversal view in the x-z plane of a post-wall 
waveguide bounded by N-layered post arrays is illustrated in 
Fig. 2. If we assume an even TE mode whose yE field is 
symmetric with respect to 0,x =  the guided field in the post-
wall waveguide is expressed as follows: 
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 Fig. 1. Schematic of a post-wall waveguide. 
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elements are { }.ma Using the model of two-dimensional 
photonic crystal  waveguide [6] for Eq.(1),  the linear equation 
to solve a  is obtained as follows: 

[ ( , ) ( , )] 0Nβ ω β ω− ⋅ =I W R a                      (2) 

with 
( , ) [e ]mi w

mn
κβ ω δ=W                             (3) 

where ( , )N β ωR  is the generalized reflection matrix of N-
layered post arrays viewed from the guiding region to the 
outward direction. ( , )N β ωR can be calculated [9] using the 
T-matrix for a circular rod of perfect conductor and the lattice 
sums. From Eq.(2) the transcendental equation to determine 
the propagation constant β is obtained as 

det[ ( , ) ( , )] 0Nβ ω β ω− =I W R .                     (4) 

The solution to β obtained from Eq.(4) is substituted into 
Eq.(2) to calculate the amplitude vector a . Finally, the mode 
solution to the post-wall waveguide is expressed as follows: 

0e ( )i zA zβ=a f                                           (5) 

where 0β  is a solution of Eq.(4), A  is the mode amplitude 
and ( )zf  is the normalized mode eigenvector, which is a  
periodic function of z  with period 2 / hπ . 
   Figure 3 shows the transversal view of two-identical post-
wall waveguides “a” and “b” which are situated in parallel and 
coupled through the BN -layered post-wall barrier. Since the 
post-wall waveguide is a laterally open structure, a part of the 
electromagnetic energy may leak out through the gaps 
between adjacent posts. If the gap length 2h r− is chosen to 
be sufficiently smaller than the wavelength and the post-wall 
is multilayered in the x direction, the leakage effect becomes 
negligible. However such a situation is not suitable for 
designing a post-wall waveguide coupler. We assume here 
that the two-parallel post-wall waveguides are bounded by the 
enough number of post-array layers in the upper and lower 
regions but are separated by a barrier consisting of a small 
number of post-array layers with BN N< . In this case, the 
leakage of the guided field into the upper and lower half space 
is strongly suppressed, whereas the two guided modes 
supported by waveguides “a” and “b” can interact efficiently 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to attain the expected power transfer between two waveguides. 

Using the model [6] of two-dimensional photonic crystal 
waveguides, the rigorous dispersion equation for the coupled 
post-wall waveguides shown in Fig. 3 is derived as follows: 
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where ( , )BN β ωR  and ( , )BN β ωT  denote the generalized 
reflection and transmission matrices of the BN -layered post-
wall barrier. We may directly solve Eqs.(6) and (7) with use of 
roots searching algorithm for transcendental equations. 
However such a direct method is very time consuming. If the 
transmission of guided fields through the barrier layer is weak 
enough, Eqs.(6) and (7) are approximated by the coupled-
mode equations based on the eigenmode field of each single 
waveguide in isolation as discussed in what follows. 

III. COUPLED-MODE EQUATIONS 

When two waveguides “a” and “b” are well separated, each 
waveguide behaves as a single waveguide and supports the 
guided mode independently in the form of Eq.(5). If the 
waveguides are placed in close proximity, the two guided 
modes interact through the barrier layer and their mode 
amplitudes slowly vary along the propagation in the z 
direction. Under this situation, we express the amplitude 
vectors for guided field modes as follows: 

0( ) e ( ) for waveguide " "i zA z z aβ=a f                 (8) 
0( )e ( ) for waveguide "b"i zB z zβ=b f                  (9) 

where the slowly varying amplitudes ( )A z  and ( )B z  describe 
a small perturbation in the mode propagation constant and 
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Fig. 2. Transversal view in the  x-z plane  for the post-wall 
waveguide bounded by N-layered post arrays. 
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Fig. 3. Two-parallel post-wall waveguides “a” and “b” 
coupled through BN -layered post-wall barrier. 



analysis under the weak coupling through ( , )
BN ω βT  is applied 

to Eqs.(6) and (7) with use of Eqs.(8) and (9). Following the 
same analytical procedure developed in [8], the coupled-mode 
equations for ( )A z  and ( )B z  are derived as follows: 
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( , ) ( , ) ( , )Nβ ω β ω β ω= −D I W R                          (13) 

( , ) ( , ) ( , ) ( , ) ( , )Bab N Nβ ω β ω β ω β ω β ω=D W R W T    (14) 

where κ  denotes the coupling coefficient, g  is the right 
eigenvector of 0( , )β ωD  that satisfies 0( , )T ω β ⋅ =D 0g  and 
the superscript T denotes the transpose of the indicated vector 
and matrix. 

Equations (10) and (11) govern the evolution of the mode 
amplitudes in individual post-wall waveguides. Their 
solutions describe the power transfer characteristics between 
two-parallel post-wall waveguides “a” and “b” coupled 
through the BN -layered barrier. From Eqs.(10) and (11) we 
have two solutions β κ∆ = ±  for the perturbed mode 
propagation constants due to the coupling. Then the 
propagation constants for the even and odd modes in the 
coupled waveguide system are obtained as follows: 

0 for  modeeven evenβ β κ= +                   (15) 

0 for  modeodd oddβ β κ= − .                  (16) 
 

IV. NUMERICAL RESULTS 

To validate the coupled-mode analysis, we performed 
numerical computations on Eqs.(10)-(14). Although a substan-
tial number of numerical examples could be generated, we 
consider here only a few examples of the coupled post-wall 
waveguides. We assume a square lattice with h p=  for the 
upper and lower post-walls in Fig. 3. The numbers of post-
wall layers are fixed to be 3N =  for the upper and lower 
layers and 1BN =  for the barrier layer. Then the structure of 
post-wall waveguides is characterized by four parameters h , 

/r h , /w h , and 0/sε ε . 
TABLE I shows the comparison of the normalized propaga-

tion constants / 2evenh πβ and / 2odd hβ π calculated by the 
coupled-mode equations (10) and (11) with those obtained 
from a rigorous mode analysis for Eqs.(6) and (7). The results 
are tabulated from (a) to (e) for five different structural 
parameters. The propagation constants of the single wave-
guide have been analyzed in [3-5] for the structures (a), (b), 
(c), and (d). The propagation constant and the coupling 
coefficient for the two-parallel waveguides has been reported 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0( ) 3.556 , / 0.25, / 2.3088, / 1.0sd h mm r h w h ε ε= = = =  
 

 Coupled-mode analysis 
(10), (11) 

Rigorous analysis 
(6), (7) 

[ ]f GHz

 

/2evenhβ π
 

/2odd hβ π
 

/2evenhβ π
 

/2odd hβ π
 25 0.16143 0.15850 0.16146 0.15846 

30 0.25502 0.25301 0.25501 0.25301 

35 0.33343 0.33170 0.33346 0.33176 

40 0.40574 0.40405 0.40569 0.40399 

 

TABLE I 
NORMALIZED PROPAGATION CONSTANTS /2hβ π OF EVEN AND 

ODD MODES CALCULATED FOR COUPLED TWO-PARALLEL 
 POST-WAVEGUIDES WITH 3N = AND 1BN = . 

0( ) 2 , / 0.2, / 3.6, / 2.33sa h mm r h w h ε ε= = = =  
 

 Coupled-mode analysis 
(10), (11) 

Rigorous analysis 
(6), (7) 

[ ]f GHz

 

/2evenhβ π
 

/2odd hβ π
 

/2evenhβ π
 

/2odd hβ π
 15 0.04589 0.04051 0.04584 0.04045 

20 0.14225 0.14054 0.14226 0.14055 

25 0.20869 0.20747 0.20870 0.20748 

30 0.26860 0.26760 0.26861 0.26761 

 

0( ) 12.5 , / 0.2, / 2.0, / 1.0se h mm r h w h ε ε= = = =  
 

 Coupled-mode analysis 
(10), (11) 

Rigorous analysis 
(6), (7) 

[ ]f GHz

 

/2evenhβ π
 

/2odd hβ π
 

/2evenhβ π
 

/2odd hβ π
   9 0.26083 0.25334 0.26077 0.25325 

10 0.31900 0.31237 0.31894 0.31229 

11 0.37308 0.36675 0.37302 0.36668 

12 0.42534 0.41877 0.42528 0.41868 
 
 

 0( ) 1.016 , / 0.3125, / 3.9075, / 9.9sc h mm r h w h ε ε= = = =  
 

 Coupled-mode analysis 
(10), (11) 

Rigorous analysis 
(6), (7) 

[ ]f GHz

 

/2evenhβ π
 

/2odd hβ π
 

/2evenhβ π
 

/2odd hβ π
 15 0.06742 0.06721 0.06741 0.06721 

19 0.14152 0.14141 0.14152 0.14142 

23 0.19782 0.19775 0.19783 0.19775 

27 0.24878 0.24871 0.24878 0.24872 

 

0( ) 5.165 , / 0.075, / 2.2767, / 2.2sb h mm r h w h ε ε= = = =  
 

 Coupled-mode analysis 
(10), (11) 

Rigorous analysis 
(6), (7) 

[ ]f GHz

 

/2evenhβ π
 

/2odd hβ π
 

/2evenhβ π
 

/2odd hβ π
   8 0.09068  0.07510  

10 0.17252 0.14697 0.17158 0.14489 

12 0.24278 0.22483 0.24226 0.22356 

14 0.30601 0.29143 0.30564 0.29034 

 



in [10] for the structure (e). 
From TABLE I we can see that for all structures the results 

obtained by the coupled-mode analysis are in close agreement 
with those of the rigorous mode analysis over a broad range of 
frequency. For the structure (e), since the odd mode of the 
rigorous analysis enters in a cutoff region at 8.0f GHz= , we 
have discarded the corresponding propagation constant of the 
coupled-mode analysis. Note that the coupled-mode analysis 
always yields two propagation constants whenever the single 
post-wall waveguide in isolation supports one guided mode. 
The results given for the structure (e) agree well with the 
theoretical and experimental results reported in [10]. 

The coupling length cL , which is the characteristic length 
for the complete power transfer from one waveguide to 
another, is given by 

2c
even odd

L π π
β β κ= =

−
.                                   (17) 

TABLE I demonstrates that the coupling length tends to 
increase as /r h  increases and hence the gap width between 
the adjacent posts decreases. In order to design the directional 
coupler within a practical device length, we need to optimize 
the value /r h  for the assumed frequency band. 

V. CONCLUSION 

We have presented a self-contained coupled-mode analysis 
for two-parallel post-wall waveguides based on the model of 
two-dimensional photonic crystal waveguides. The first-order 
coupled-mode equations have been systematically derived, 
which govern the evolution of the modal amplitudes in each 
individual post-wall waveguide. The coupling coefficients 
have been calculated by using the propagation constants and 
eigenmode solutions of the single post-wall waveguide in 
isolation. The proposed formulation provides a useful 
analytical and numerical technique for approximating the 

coupling between post-wall waveguides in close proximity 
with a good physical justification. 
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