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Abstract—Various kinds of information diffuse across
networks in the real world. We have already proposed a
mathematical model that realizes the effects of dynamical
sending probability on the information diffusion including
two specific diffusion dynamics. In this paper, we pro-
pose a new model based on the neural mechanism: when
a node’s interest for messages is higher than its intrinsic
threshold value, the node sends messages to its neighbors.
We found that the new model shows similar behavior to the
former model, but the dynamics of the diffusion is much
more closely related to that of the interest.

1. Introduction

In the real world, various complex phenomena occur by
interactions between many components. If we regard the
components as nodes and their interactions as links, we
can describe many kinds of real systems as networks. For
example, in a network of friendships, persons are nodes
and their friendships are links. In the real networks, vari-
ous kinds of information diffuse, such as diseases, electric
pulses in neural networks, and so on. Therefore, it is very
important to clarify how the information diffuses in the net-
works toward effective prevention of infectious diseases,
understanding neural systems, and so on [1].

Using a simple mathematical model of infectious dis-
eases, D. Watts and S. Strogatz showed that viruses eas-
ily diffuse across the random networks which have many
shortcuts and few clusters [2]. On the other hand, D. Cen-
tola conducted an experiment through social networking
service on the Internet and reported that social messages
easily diffused across the lattice networks which have many
clusters and few shortcuts [3]. We investigated the results
obtained by Centola and proposed a mathematical model
of information diffusion which can reproduce the results of
Centola’s experiments [4]. Our model includes two specific
diffusion dynamics on the basis of Centola’s experiments.
First, if a node receives a second message, a probability
with which the node sends messages to adjacent nodes will
increase. We call this the sending probability. Second, if a

node which has received messages from neighbors did not
send messages during a certain period of time, the node be-
comes calm, or never sends messages subsequently. The re-
sults of numerical experiments showed that our model suc-
cessfully reproduces the results of Centola’s experiments.

In this paper, we extended the former model to treat two
issues: (i) the sending probability increases depending on
the number of received messages and (ii) the sending prob-
ability should gradually decrease with time. Then, we used
a neural mechanism to construct a new model of infor-
mation diffusion: when a neuron fires, it sends electrical
pulses. We treated the internal state of a neuron as the inter-
est for messages of a node. If the node receives messages,
its interest gradually increases, depending on the number of
messages. Then, when the interest is higher than its thresh-
old value, the node sends messages to its neighbors. The
interest changes dynamically during a process of diffusion.
We investigated the temporal changes of the interest and
how the information diffuses by using two updating meth-
ods. As a result, we found that the information diffuses
widely even though the network is regular such as ring-
lattice networks. These results of our new model agree
with Centola’s experiments [3]. The results also indicate
that the diffusion performance depends on how we update
the interest of nodes.

2. Dynamics of information diffusion

2.1. Former proposed model [4]

Our proposed model of the information diffusion mainly
consists of two diffusion dynamics [4]: First, if the node
receives a second message, the sending probability r in-
creases by α where α (< 1) is a constant parameter. In this
model [4], we assume that r + α < 1. Second, if the node
has received messages but does not send messages during
a given time period of T , the node never sends messages
after T because the node has no interest in the messages.
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2.2. Interest for information

In the former model, we assume that r increases when
the node receives the second message, but does not increase
even if the node receives more than three messages for the
sake of simplicity. We assume that the node suddenly stops
sending messages after the temporal period of T in the for-
mer model. However, r should gradually decreases with
time. To modify these aspects of the former model, we
propose a new model of information diffusion which in-
troduces a similar dynamics to a neural dynamics. Our
proposed model is based on the mechanism that neurons
receive and send electrical pulses in neural networks. The
neural networks consist of neurons. Each neuron has the
internal state. When the neuron receives electrical pulses,
the internal state increases. If the internal state gets higher
than its intrinsic threshold value, the neuron fires and sends
pulses to its neighbors. The internal state decreases with
time and converges to 0. We assume that this neural mech-
anism corresponds to a person’s message sending mecha-
nism. We treat the interest for messages as the internal state
of neurons and the messages as the electrical pulses. Ev-
ery person has his/her own interest for messages. When
he/she receives a message, he/she becomes interested in
the message. When he/she receives multiple messages,
his/her interest for the messages gradually increases. It
is considered that every person has his/her own criterion
whether he/she sends messages or not. Then, if the inter-
est becomes higher than his/her threshold value, he/she de-
cides to send the messages to neighbors. Without receiving
messages, his/her interest decreases with time, and he/she
hardly sends messages.

2.3. Dynamics of Interest

We consider the relationship between the interest of the
node i at time t, xi(t), and the interest xi(t + 1) at time t + 1.
In general, the interest decreases gradually after the node
receives messages. When the node receives another mes-
sage at time t, xi(t) increases depending on the number of
neighbors which send messages. In addition, it is natural
that without receiving another message, the node increases
the interest by itself and sends messages. This could hap-
pen if the node has a specific interest in received messages.
Therefore, we can describe the relationship between xi(t)
and xi(t + 1) as follows:

xi(t + 1) = sxi(t) +
∑
j∈Gi

α jH(x j(t) − θ j) + βZi(t), (1)

H(y) =

{
0 (y < 0)
1 (y > 0), (2)

where s (< 1) is a positive parameter which shows how
much the interest decreases at each time step, α j is a scaling
parameter for the messages from its neighbors j ∈ Gi, Gi is
a set of indices of nodes which are connected to the node i

and which has not sent messages by the time t, H(x j(t)−θ j)
takes unity when the node j sends messages at time t, oth-
erwise zero, Zi(t) takes unity with the probability ri, oth-
erwise zero, and β denotes how much the node i increases
the interest by itself. The interest always decreases by s ex-
ponentially, while receiving additional messages from ad-
jacent nodes and increasing the interest by itself are the
stochastic behavior.

Because Eq. (1) is a linear difference equation, we can
solve it. The solution of Eq. (1) is

xi(t + 1) = sxi(t) +
∑
j∈Gi

α jH(c j(t)) + βZi(t)

= s

sxi(t − 1) +
∑
j∈Gi

α jH(c j(t − 1)) + βZi(t − 1)


+
∑
j∈Gi

α jH(c j(t)) + βZi(t)

= s

s
sxi(t − 2) +

∑
j∈Gi

α jH(c j(t − 2)) + βZi(t − 2)


+
∑
j∈Gi

α jH(c j(t − 1)) + βZi(t − 1)


+
∑
j∈Gi

α jH(c j(t)) + βZi(t),

where we define x j(t) − θ j as c j(t). Eventually, we obtain

xi(t + 1) = st+1xi(0) +
t∑

n=0

sn

∑j∈Gi

α jH(c j(t − n)) + βZi(t − n)

 . (3)

Although we have several options to describe the interests,
we defined s to e−1/τ where τ controls how fast the inter-
est decreases with time. Therefore, we rewrite Eq. (3) as
follows:

xi(t + 1) = e−1/τxi(t) +
∑
j∈Gi

α jH(c j(t)) + βZi(t). (4)

If xi(t + 1) > θi (θi is a threshold of the node i), the node i
sends messages to its neighbors. The node i which has sent
messages never send messages subsequently.

3. Numerical Experiments

3.1. Temporal change of Interest

In our experiments, first, we set xi(0) (i = 1, · · · ,N) to
0. At t = 0, we randomly choose an initial spreader and
the interest of its neighbors increases in α j. We applied
our proposed model to networks and investigated the tem-
poral changes of the interest for each node. We used two
networks, ring-lattice networks (RLN) [2] and random net-
works (RN) which are generated from RLN [2]. The nodes
in RLN are arranged in a circular pattern, and sequentially
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numbered from 1 to N in the clockwise direction. The pa-
rameters are set to τ = 30, α j = 0.5 ( j = 1, · · · ,N), and
β = 0.1. We assume that ri obeys the exponential distribu-
tion whose average is 0.01 and the threshold θi obeys the
uniform distribution whose range is [0.4, 1.0].

We investigated the temporal changes of xi(t) (i =
1, · · · ,N). In the real world, people often receive messages
and forward them to friends, and the friends might for-
ward received messages again and again. This is an asyn-
chronous update. Therefore, we adopted the asynchronous
update for updating xi(t), but we adopted two kinds of up-
dating methods. In the first method, we update xi(t) in the

(a) Index(N = 128) (b) Random(N = 128)

(c) Index(N = 512) (d) Random(N = 512)

(e) Index(N = 2048) (f) Random(N = 2048)

Figure 1: Temporal changes of x(t) for all nodes in RLN
(k = 6) with two kinds of asynchronous update methods.
To see the outline, data are plotted every five nodes in (c)
and (d), and every twenty nodes in (e) and (f).

order of the index i. In the second method, we randomly
choose a node i and update xi(t). Figure 1(a), (c), and (e)
is the result for RLN (N = 128, 512, and 2048) when the
interests are updated in the order of the index numbers of
nodes. Even if N increases, xi(t) (i = 1, · · · ,N) rapidly in-
creases and exceeds θi (i = 1, · · · ,N), so that all of them
send messages only during a few steps. This is because
RLN has a specific structure. For example, let us assume
that the node i sends messages to the node i− 3, i− 2, i− 1,
i + 1, i + 2, and i + 3 at t. At t + 1, the interest of the
node i − 3 is updated. If xi−3(t + 1) > θi−3, the node i − 3
sends messages toward the node i − 6, i − 5, i − 4, i − 2,
i − 1, and i. Then, the interest of the node i − 2 is updated.

This node received messages from the node i at t and from
the node i − 3 at t + 1. Therefore, xi−2(t + 1) depends on
the order of the updating, so that the sending probability of
the node i − 2 increases. Because the order of the indices
of nodes and that of the updating are the same, the inter-
ests of all nodes in RLN increase rapidly only in a few step
by repeating this procedure. However, when the interest is
updated randomly, we cannot observe this tendency. From
Fig. 1(a), (c), and (e), as N increases, it takes longer time
for messages to diffuse across whole networks.

On the other hand, the results for RN are shown in Fig. 2.
From Fig. 2, no difference is observed between the two up-
dating methods. Because RN has no specific structure, that
is, the nodes are connected randomly, no difference exists
in the results between the updating methods. In addition,
even if N increases, it takes shorter time for messages to
diffuse in whole networks than the results in Fig. 1 for the
random updating method.

(a) Index(N = 128) (b) Random(N = 128)

(c) Index(N = 512) (d) Random(N = 512)

(e) Index(N = 2048) (f) Random(N = 2048)

Figure 2: The same as Fig. 1, but for RN.

3.2. Diffusion rate and convergence time

We investigated the diffusion rate and the convergence
time. The diffusion rate quantifies the ratio of nodes that
send the received messages at each time step and is de-
scribed as follows:

Rt =
1
N

N∑
i=1

ai(t), (5)
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where if the node i has sent messages by the time t, ai(t) =
1, otherwise ai(t) = 0. If all of the nodes in the network
have sent messages, the diffusion rate takes unity, and if
no nodes have sent, the diffusion rate takes 0. The con-
vergence time is the time when the diffusion stops. In the
following, we evaluated the diffusion rate R for the pro-
posed model in case of RLN and RN and then investigated
the final diffusion rate and its convergence time.

We show the results in Fig. 3. The results are averaged
over 100 trials. The difference between the updating meth-
ods does not affect the diffusion rate for both networks.
Even if N increases, messages diffuse more widely in RLN
than RN. These results are almost the same as the results
obtained from our former proposed model [4]. These re-
sults indicate that to diffuse messages in whole networks, it
is necessary to increase the interest through many clusters.

However, the convergence time depends on the updating
methods. If we update the interest in the order of the in-
dex of the nodes, messages diffuse more quickly in RLN
than RN (Fig. 3(b)). The reason for these results will be
the same as the reason for Fig. 1(a), (c), and (e) as we men-
tioned in Sec. 3.1. In contrast, if we update the interest ran-
domly, messages diffuse more quickly in RN than across
RLN. As a result, the difference of the updating methods
affects the information diffusion, and if the methods match
with a network structure, the diffusion shows the specific
characteristic such as Fig. 1(a), (c), and (e).
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Figure 3: Diffusion rates and convergence times as a func-
tion of N with two kinds of asynchronous update methods.
Red lines represent the results of RLN, and blue lines rep-
resent the results of RN. The results are averaged over 100
different trials. The vertical bars are standard deviations.

4. Conclusion

In this paper, we proposed a new mathematical model
based on the neural mechanism. We considered the inter-

nal state of the neuron as the person’s interest for messages.
If the node receives messages, the interest increases, but if
not, the interest decreases with time. When the interest
exceeds the intrinsic threshold value, the node sends mes-
sages to its neighbors. We applied the new model to RLN
and RN and investigated how the information diffuses. In
the experiments, we used two updating methods for the in-
terest. One is the update of the interest on the basis of indi-
cied of nodes and the other is the random update.

As a result, messages diffused widely in RLN. This re-
sult agrees with the results obtained by the former model
[4] and those of Centola’s experiments [3]. It indicates that
increase of the interest of nodes through many clusters is
an important factor to diffuse messages in whole networks.
In addition, if we update the interest in the order of index
numbers, the interests of all nodes rapidly increase for only
a few steps in RLN even if N increases. This is because
the order of the indices of nodes and that of updating the
interest are the same. This result implies that the network
structures and the updating methods affect the behavior of
the information diffusion.
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