
IEICE Proceeding Series 
 
 
 
 
Multilevel modeling platform and its application for modeling in 
neuroscience 

 
 
Yoshiyuki Asai, Hideki Oka, Alessandro E. P. Villa, Hiroaki Kitano 

 
 
Vol. 1 pp. 296-299 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Multilevel modeling platform and its application for modeling in neuroscience

Yoshiyuki Asai1, Hideki Oka2, Alessandro E. P. Villa3 and Hiroaki Kitano1,4

1. Open Biology Unit, Okinawa Institute of Science and Technology Graduate University,
1919-1 Tancha, Onna-son, Okinawa, Japan

2. Neuroheuristic Research Group, HEC-ISI, University of Lausanne,
CH-1015, Lausanne, Switzerland

3. RIKEN, Brain Science Institute, Neuroinformatics Japan Center,
2-1, Hirosawa, Wako, Saitama, Japan

4. The Systems Biology Institute, 5-6-9, Shirokanedai, Minato, Tokyo, Japan
Email: yoshiyuki.asai@oist.jp, czoka@brain.riken.jp, avilla@neuroheuristic.org, kitano@sbi.jp

Abstract—Recently models of physiological systems
including single neuron or neural network models are get-
ting larger in size and more complicated in accuracy. In
addition, there are a wide range of models. To enhance
sharing and reusing a whole or a part of a model is an
effective way to promote the computational neuroscience.
A platform for model sharing, and for building multilevel
models of physiological systems have been developed and
presented in this article with a use case of a neural network
modeling. On the platform, a model is represented as an
aggregate of modules. We applied our new platform to im-
plement the neural network model, and demonstrated the
platform functions, especially focusing on a feature to cre-
ate large scale models.

1. Introduction

In past decades, based on the huge amount of data pro-
vided by the reductionism science, modeling-based science
in systems biology[1] and integrated physiology has been
progressing rapidly. Models are getting bigger and bigger
in the size, and more and more complicated and detailed
in the structure. Neuroscience is not exception. Simu-
lation studies of brain science tends to use bigger neural
networks and more detailed and complicated single neuron
models. It is almost impossible to build such models with-
out inter-research-group collaborations, not only between
‘wet’ and ‘dry’ research groups, but also ‘dry’ and ‘dry’
research groups. For promoting effective collaboration to
build large-scale models, it is very important to develop
tools to support such activities.

There are a couple of efforts to develop such technology
such as SBML[2], CellML[3] and PHML. These are XML
based descriptive language formats to describe dynamics
of physiological systems. PHML is a rather recently de-
veloped language with an application PhysioDesigner on
which users can build a mathematical model of multilevel
physiological systems with graphical user interface. On
PhysioDesigner and PHML, every physiological entity in-
cluded in a model is represented as a module. Hence a
model is an aggregate of modules. It is easy to share and

reuse a whole or parts of model because of the modular
expression.

In a series of our previous work[4, 5, 6], a multiple lay-
ers neural network characterized by diverging/converging
projections between successive layers activated by an ex-
ternal spatio-temporal input pattern in presence of stochas-
tic background activities was considered. We have reported
the properties and performance of spike information trans-
mission in the network depending on neuron model type,
inputed information type and background activity level.
The models were rather simple and can be more detailed
and bigger in size for further investigation. Taking the net-
work model as an example, the implementation of the net-
work model on PhysioDesigner is demonstrated in this ar-
ticle.

Simulations of PHML models can be conducted by a
simulator Flint which is developed along with PhysioDe-
signer. It is also available at http://physiodesigner.
org. Details of Flint will be shown somewhere else.

2. Model building platform: PhysioDesigner

2.1. Overview

PhysioDesigner is a software that supports spatiotem-
poral multiple level modeling based on modules to create
computable models of physiological systems. The software
is opened and available at http://physiodesigner.
org. PhysioDesigner was rebranded from insilicoIDE
(http://physiome.jp) in 2011[7, 8]. Models build on
PhysioDesigner are written in PHML format, which is an
XML based specification to describe hierarchy of systems
in comprehensive biological models explicitly, which is a
successor language of ISML (http://physiome.jp)[9].

In PHML, each of biological and physiological elements
involved in a model is called a module. Structural and func-
tional relationships among modules are defined by edges.
A group of several modules can be defined as a module at
one level higher concept. By this recursive definition of the
modules, a hierarchical structure of physiological systems
is expressed in a model.
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Figure 1: A. 20 instances of a template were created, and
aligned in line. The template and instances are located un-
der a module named ”Layer1”. B. The module ”Layer1”
was copied to create the second layer. Then instances in
Layer1 and Layer2 were linked by functional edges with
1:15 correspondence, i.e. every instance in Layer1 projects
to randomly selected 15 instances in Layer2. Hence some
of instances in Layer2 receive inputs from multiple in-
stances in Layer1. C. As a special case, it is also possible
to link instances with one to one correspondence (without
any overlap in Layer2) by automated method.

Each module is quantitatively characterized by several
physical-quantities, such as, states defining the system’s
dynamics, and variable and static parameters. Defini-
tion of the dynamics such as ordinary/partial differential
equations, or functions of physical-quantities are explic-
itly described by mathematical equations using physical-
quantities. A definition of a functional relationship be-
tween any two modules are represented by functional edges
linking an out-port of a module to an in-port of other mod-
ule. Each of functional edges carries a numerical informa-
tion of a physical-quantity associated to the out-port in the
sender module. The module can utilize a value received via
an in-port in definitions of physical-quantities.

A concept to make a kind of package of a physiologi-
cal function has been introduced to PHML, which is called
capsulation, in order to enhance the model sharing even a
part of a model. By the capsulation, several modules act-
ing together as a certain physiological function are encap-
sulated by a capsule module. All connections to (from)
the encapsulated modules from (to) outside of the capsule
must go through the capsule to secure the independence of
the encapsulated modules. By this isolation of modules, it
becomes easier to reuse the encapsulated modules in other
part of the model or in other models.

2.2. Template and instance framework

One of distinguished features of PhysioDesigner is a
template/instance framework to assist to create large size
models. For example, to create a neural network model
consisting of the same type of neurons, instead of multiply-
ing modules representing a neuron, it is possible to define
a template of a neuron model, and create a lot of instances

Poissonian
background activity

External input 
spike train

These modules were used 
as a template of a neuron model

MAT model

Synapse current 
generator

Figure 2: Left panel shows an implementation of a single
MAT model, synaptic current generator, and input spike
train generators on PhysioDesigner. Right panel shows a
simulation result of the model on a simulator Flint. Red
and blue curves show the adaptive threshold and membrane
potential, respectively.

according to the template. Then if parameters in the tem-
plate were changed, the changes have an effect to the all
instances. Additionally, if some instances need to be given
a specific characteristics, initial values of dynamic param-
eters and constants can be modified individually.

The number of instances can be big. And often we need
to make links between instances of a template and instances
of the other template. But because of the number of in-
stances, it is not practical to define edges one by one. An
automated method to create links among instances is re-
quired, and has been implemented on PhysioDesigner (Fig.
1).

3. Implementation of a neural network model

3.1. Single neuron model

In this article, we adopted a multiple-timescale adaptive
threshold (MAT) neuron model[10] to simulate the dynam-
ics of regular spiking neurons, whose membrane potential
dynamics follows a non-resetting leaky integrator,

τm
dV
dt
= −V(t) + R A Iext(t) , (1)

where τm,V,R and A are the membrane time constant,
membrane potential, membrane resistance, and scaling fac-
tor, respectively. A spike is generated when V(t) ≥ θ(t),
θ(t) = ω+H1(t)+H2(t) , dH1

dt = −H1/τ1 ,
dH2
dt = −H2/τ2 ,

where ω is the resting value. H1 and H2 are components of
the fast and slow threshold dynamics (characterized by de-
caying time constants τ1 and τ2, respectively) which have
a discrete jump when V(t) ≥ θ(t), H1 = H1 + α1 ,H2 =

H2 + α2 .Parameters were set to values τm = 5 ms, R = 50
MΩ, A = 0.106, ω = 19 mV, τ1 = 10 ms, τ2 = 200
ms, α1 = 37 mV, α2 = 2 mV. The implementation of this
neuron model and simulation result are shown in Fig. 2.
Numerical integration was done by the Euler method with
0.002 ms time steps for all cases.
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Figure 3: Left panel shows an implementation of a single
MAT model, synaptic current generator, and input spike
train generators on PhysioDesigner. Right panel shows a
simulation result of the model on a simulator Flint. Red
and blue curves show the adaptive threshold and membrane
potential, respectively.

3.2. Neural network model

We consider a diverging/converging neural network
composed of ten layers. Each layer includes 20 neurons.
All neurons in a network are identical and are MAT mod-
els and receive background activity represented by an in-
dependent Poissonian spike train with a mean firing rate of
425 spikes/s. Each neuron of Layer 1 receives an external
input represented by 15 spike trains derived from a dynami-
cal systems described below. From 2nd to downward layers
each neuron receives afferences from 15 neurons randomly
selected among those of the immediately upstream layer.
All connections were hardwired, and no synaptic plasticity
was taken into account.

A synaptic current I was defined as I = −A
∑

k gsyn(t −
tk) ,where A is a constant intensity (A = 0.9 for all simu-
lations), and tk represents time when the k-th spike arrives
to the neuron. gsyn is the post synaptic conductance repre-
sented by gsyn(t) = C0

τ̃
e−t/τ̃ ,where τ̃ is a time constant given

by 2 ms. C0 is a coefficient used to normalize the maximum
amplitude of gsyn(t) to 1. It is necessary for a post-synaptic
neuron to integrate several arriving synaptic currents for a
spike generation.

Inter-spike-intervals of input spike train given to the first
layer of the network were generated based on Chen’s equa-
tions, which exhibits chaotic dynamics with certain param-
eter values.

dx
dt
= a(y − x) ,

dy
dt
= (c − a)x − xz + cy ,

dz
dt
= xy − bz

where a = 35.0, b = 3.0, c = 28.0, and x(0) = y(0) =
z(0) = 3.0 for initial conditions. We considered a Poincaré
map where the Poincaré section was defined by dx

dt = 0, and

L1

L3

L6

L10

1s

Input spikes

Figure 4: A raster plot of neural activity at layer 1, 3, 6 and
10, labeled by L1, L3, L6 and L10, respectively. The bot-
tom shows the input spike train fed to the first layer of the
network. In each layer, there are twenty rows correspond-
ing to twenty neurons.

the sequence of z(t) on the section was traced. z(t) was used
as the inter-spike-interval of the input spike train.

3.3. Implementation on PhysioDesigner

In a single layer, there are 20 neurons and 20 background
activity generators which were modeled as instances. Ev-
ery neuron instance has to receive an independent back-
ground activity, hence they were connected by one-to-one.
Neuron instances in a layer to those in a next layer were
linked by one to fifteen correspondence. Whole network
model is shown in Fig. 3.

The simulation was done by Flint. The raster plot of
spikes of neurons in Layers 1, 3, 6 and 10 were displayed
in Fig. 4.

4. Discussion

Taking a diverging/converging neural network as an ex-
ample, we demonstrated one of functions of PhysioDe-
signer to support users to build large scale models which
can be applicable to neuroscience as well as other phys-
iological field. There are a lot of other tools to sup-
port modeling in neuroscience, such as Neuron (http:
//www.neuron.yale.edu/neuron/), Genesis (http://
www.genesis-sim.org/GENESIS/) and more. Besides
the function presented here, PhysioDesigner equips other
functions to support multilevel modeling. In total, Phys-
ioDesigner can provide complementary functions to those
existing applications. And moreover if users want to in-
tegrate other physiological systems such as muscles, cir-
culation, and so on, PhysioDesigner can still support such
modeling comprehensively.

One unique function of PhysioDesigner is to enable
users to build SBML-PHML hybrid models. SBML (the
systems biology markup language) [2] is an XML for-
mat for computer models of biological processes, such as
metabolism, cell signaling, and more. PHML is good at
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representing a functional network and hierarchical struc-
ture using its modular representation. Combining SBML
and PHML, it is possible to extend the capability of both
languages complementarily to construct models including
multiple levels of physiological phenomena from biochem-
ical processes to electrophysiological dynamics.

Integration of morphometric data with mathematical
models is another function of PhysioDesigner worth to be
mentioned. Morphology information can be used to define,
for example, a domain in which partial differential equa-
tions (PDEs) such as Poisson equation for the electric field.
These techniques can be used in calculation of EEG, for ex-
ample, considering explicitly modeled hypothetical neural
activity. Simple models integrating morphology and PDEs
can be dealt with on PhysioDesigner already, and details
will be presented somewhere else.

To providing people a chance to share or reuse anal-
ysis tools is also important. There is an effort called
OpenAdap.net [11] to develop a web-based community in
which people can share tools for data analyses. Recently
another new effort called Garuda alliance [12] (http://
www.garuda-alliance.org) has initiated. Garuda plat-
form aims at providing seamless linkages among existing
tools so that users can work on multiple tools as like on one
platform. PhysioDesigner is an alliance member of Garuda
project.

We hope PhysioDesigner and relevant technologies can
be contributory to the development of physiology and neu-
roscience.
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