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Abstract—The experimental technique of Digital Image
Correlation is used to measure the displacement of clus-
ters of glass beads in an assembly across strain intervals
throughout a plane strain compression test. For each strain
interval a complex network is constructed whose connec-
tivity captures similarity of kinematical response of the ob-
served clusters. We propose a method of obtaining a net-
work of networks which collates the temporal activity of
these kinematical networks through loading. This is done
by considering convex combinations of network adjacency
matrices with coeflicients determined using a distance ker-
nel function. The use of a distance kernel allows the in-
troduction of a network interaction score which enables
the deformation history to be partitioned into temporal se-
quences of different kinematical behaviour. A network of
networks in each of these temporal ranges helps identify
areas within the material responsible for onset of failure,
the localized failure zone and shear band activity.

1. Introduction

Granular materials (e.g., soil, rock, powders etc.) are
ubiquitous in Nature. Their behaviour in response to stim-
ulus such as shear and compression is not fully understood
despite such knowledge being crucial to improved under-
standing of processes involving these stimuli. Recently the
behaviour of granular media has been studied using com-
plex networks of the fabric [1] and kinematics [2]. These
works considered collections of networks individually but
it has become apparent in other arenas that consideration
of network of networks is important (e.g., [3, 4]). Here we
propose a method of combining evolving networks as a su-
perposition whose coefficients allow for a multiscale reso-
Iution examination of network interaction. We demonstrate
the usefulness of this network of networks with respect to
collections of kinematic network representations of a de-
forming experimental assembly of glass beads which ex-
hibits localized failure through shear banding.

2. Glass beads experiment

We subject a low porosity specimen (approx. 140 by 40
by 80 mm) of glass beads to plane strain compression. The

specimen sits on a translatable base which is kinematically
free to slide only in the in-plane direction, thus allowing for
unconstrained translation along a shear band when such a
structure emerges. Axial deformation rates are small, about
0.05 mm/min. Every 0.025% global axial strain, or ev-
ery 45 sec throughout shear, digital images are collected,
as well as readings of macroscopic axial and out-of-plane
forces and axial and in plane displacements.

The digital image correlation (DIC) technique used here
requires the subject material to possess local material
colour variations at the scale of interest. To achieve the re-
quired variation in our granular sample, we mixed together
materials of different colour. The glass bead material is
a bi-disperse mixture of 1.0-mm opaque orange (40% by
mass) and 1.5-mm (60% by mass) opaque purple, green
and yellow beads. The median grain size is roughly 1.25
mm. Typical macroscopic stress-strain data are given in
Fig. 1(a).

DIC is used to compute in-plane displacements across
the out-of-plane specimen surface. DIC mathematically
tracks pixel gray level value patterns manifested within
small subsets of pixels, here comprising about three to four
grains across (e.g., [5, 6]). Incremental DIC analyses are
performed every 0.15% axial strain, representing about 4%
gross shear strain across a shear band. Figure 1(b) shows
the observed displacement field at the final observed strain
increment. A single persistent shear band develops in the
sample, the measured thickness of which is around 7 mean
grain diameters.

3. Network representation of DIC data

The kinematic data provided by DIC is resolved to a
fixed number of observation sites on a mesh (i.e., a grid)
which itself is fixed throughout the deformation. At each
site and across a specified strain interval the displacement
of an identifiable cluster of grains is recorded. To convert
this information to a network requires the specification of
what constituents a network node and also a method to con-
nect nodes with network links. In [2] we proposed two
ways — the k-net and S-map — of defining links given
network nodes represent the individual observation sites.
Here, we use the k-net formalism to help present our net-
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Figure 1: (a) The stress-strain response of the glass beads
to plane strain compression. (b) The displacement field at
the final observed strain interval clearly identifies the fully
formed shear band zone. (c) The (relative) node closeness
centrality of the network mapped back to the observation
sites. (d) Abstract representation of the k-net at the final
observed strain interval.

work of networks method. Specifically, network nodes rep-
resent the individual observation sites and network links
are drawn if the corresponding displacement information is
close. The term close is relative and in a k-net each node
is connected to a minimum of k other nodes based on the
k closest matches of observed displacement based on the
Euclidean norm. The value of k is selected to be the mini-
mum value such that the resulting k-net first forms a single
component network (i.e., each node is reachable to every
other node by a finite shortest network path length).

In [2] we constructed k-nets for a plane strain compres-
sion test of mixed concrete at each observed strain interval
of the deformation and demonstrated that appropriate prop-
erties of the resulting networks identified, or highlighted,
important kinematical and rheological changes occurring
within the sample. For example, in Fig. 1 we show an
abstract representation of the k-net constructed at the fi-
nal recorded strain interval of the glass bead test and the
network property of closeness centrality mapped back to
the observation sites of the physical sample. We see at
this post-failure strain interval the dominant and persistent
shear band is fully formed with observation sites within the
band corresponding to the “neck” of the abstract represen-
tation of the k-net and these sites/nodes have high relative
values of closeness centrality.

Our goal here is to introduce a way of collating the infor-
mation in all of these network representations, or a suitably
chosen temporal subset, so that essential features of the
physical system can be probed through a multi-resolution
analysis. The method is quite general and points the way
towards combining information in collections of networks
of a system each constructed with respect to different prop-
erties or aspects of the system.

4. Network of networks

For a given observed property of interest a network can
be constructed based on the relationship between measure-
ments of properties throughout deformation (see, Fig. 1).
These networks can be studied in isolation to provide use-
ful interpretations and understanding of the response be-
haviour of a granular material to a deformation program
at multiple scales — the scale determined by the property
of interest. Here, we turn our attention to the problem of
usefully collating the information obtained from different
networks. In particular, we consider how one can construct
a single network from a number of particle property net-
works whose own properties can further reveal insights to
grain rearrangements. We suggest two methods of perform-
ing a superposition of networks to produce a network of
networks with the second method providing a means for
examining granular materials at multiple resolutions.

4.1. Convex combination

Suppose we have constructed networks N; ,i = 1,...,n
based on n different properties of interest — or using the
same property at n different times through a deformation
program — where N; represents the adjacency matrix of
each particle property network. We can combine the in-
formation embedded in each network by considering the
network of networks given by

N = ana,-N,- (1)
i=1

where without loss of generality we consider convex com-
binations so that for a; > 0 we have

Sa=1. @)
i=1

Clearly, a; = 1 and a; = 0 Vj # i recovers each individual
particle property network. A second choice of weighting in
the superposition is @; = 1/n Vi. This weights all property
networks equally resulting in a weight matrix N. We can
identify areas of high and low connectivity over the dura-
tion of the experiment using weighted network properties
such as node strength or average node strength.

4.2. Kernel estimation

A second method providing a multi-resolution analysis
is to combine the particle property networks in a manner
inspired by kernel density estimation of network commu-
nity structures [7]. We suggest placing a kernel on each
network and describe the interaction between networks by
modelling the strength of interaction by a decaying func-
tion based on the distance between the networks. This sets
up a multiple interaction system, or network of networks,
and the accumulated interaction levels of the networks re-
flects the intrinsic structures of the networks and the mate-
rial they represent. Each kernel function has a bandwidth
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and tuning of this parameter allows a multiscale or multi-
resolution aspect of the analysis.

For two networks i and j we define G;; to be the Ham-
ming distance between the networks [8]. Since each net-
work has the same identifiable node structure this distance
can reflect the differences in the link structure between the
two networks. To model the interaction between networks
we follow [7] and select a kernel function of the form

K(x/h) = exp(—x>/2h?) 3)

The parameter % is the bandwidth of the kernel and deter-
mines the spread, or scale of the analysis. We can also
gauge the level of importance a network achieves for a
given bandwidth by considering the network accumulated
impact score (essentially the node Al score of [7]) defined
by

pi=) K=" @
j=1

For a given bandwidth, or resolution, we also obtain a
weighted network whose properties can be studied to re-
veal information about the material. That is, consider the
weights @ in (1) to be of the form

@i =Bi/ D B 5)
J

5. Networks of kinematical networks

The most straightforward way of combining a number
of networks is through the convex combination expressed
in (1) and (2) with all weights equal. If we are combining
n adjacency matrices this results in a weighted adjacency
matrix and one of the simplest network property to resolve
features is node strength or its average which is a general-
ization of node degree of unweighted networks to weighted
networks. In Fig. 2(a) we show the node-strength from the
network of network convex sum and in Fig. 2(b) we present
the average node strength (i.e., the node strength divided by
the node degree). We remark that the node strength of this
network of networks when mapped back to the location of
the observation sites is relatively uninformative similar to
the node degree of individual k-networks in [2] for a sim-
ilar loading test of mixed concrete sand. In contrast the
average node strength of this network of networks appears
capable of resolving all of the important kinematical activ-
ity throughout the entire loading program. We see that the
prominent shear band region is clearly delineated, however,
observational sites of higher relative average node strength
have also been resolved.

In our second proposed method of obtaining a convex
combination network of networks using a kernel function
we must first calculate the distance between each network.
Recall, we select the distance metric of Hamming distance
which counts the discrepancy in network connections (i.e.,
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Figure 2: (a) The node strength of the convex sum of net-
works with equal weights. (b) The average node strength
of the convex sum of networks with equal weights.

links) between each network. This pairwise Hamming dis-
tance matrix is passed through the kernel function (3) for a
given bandwidth. We have found a useful way of selecting
a suitable bandwidth is to choose / to be a multiple of the
average value of the Hamming distance, say G, between
networks. In Fig. 3(a)-(b) we show the effects of tuning the
bandwidth at 0.5G and 1.0G respectively.
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Figure 3: The Hamming distance matrix transferred
through the Gaussian kernel function at bandwidths (a)
0.5G, (b) 1.0G. (c) The normalized network accumulation
score at two bandwidths. (d) A simple-minded grouping of
the network accumulation scores at bandwidth G identifies
three temporal groupings.

We summarize the information in each of these kernel
distributions by calculating the normalized version (5) of
the network accumulation (interaction) score (4). This nor-
malized score for each of the selected bandwidths is shown
in Fig. 3(c). For lower bandwidths we converge to the
equal weight case considered earlier and for higher band-
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widths in this collection of networks we found qualitatively
the same features as the trace shown for G over a wide
range. If we sum the networks based on these accumulation
scores and then examine the resulting network of networks
with respect to average node strength we find essentially
the same results as shown in Fig. 2(b). The strength of
the kernel method of combining networks, however, is ap-
parent when we use it to identify subsets of networks to
combine in a fashion akin to the use of kernel functions
to identify network community structures [7]. If we per-
form a simple temporal parsing of the network accumula-
tion score whereby we reset the value of a score to be the
value of the maximum value of its neighbour then after one
iteration we can identify a crude grouping of the networks
into three temporal regions (see, Fig. 3(d)). If we combine
the networks in each of these three regions using the basic
equal weight convex combination then we achieve a multi-
resolution perspective of the important kinematical activ-
ity through loading. The average network node strength of
each of these three networks of networks is displayed in
Fig. 4. We note that the behaviour observed in the network
of Fig. 2(b) is dominated by the activity of the fully formed
shear band seen in Fig. 4(c). The behaviour of the sample
at the onset of failure and during failure is captured by the
network of networks shown in Fig. 4(a) and 4(b) respec-
tively. Figs. 4(a)—(b) also reveal the activity in this failure
zone is made up of (possibly) two competing criss-crossed
bands before the final localized zone from left to right wins.
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Figure 4: Average node strength of network of networks
over the strain intervals (a) 1st to 8th (b) 8th to 11th and (c¢)
12th to the 30th and final interval.

6. Conclusion

We have proposed a method of obtaining a network
of networks by considering convex combinations of adja-
cency matrices. The introduction of a kernel function to
determine the weights of the convex combinations allows
the flexibility of bandwidth tuning. This provides a way
of obtaining a temporal grouping of the networks to high-
light different aspects of network, or system, evolution. For
the particular test case presented here we found three clear

distinct regions in the deformation history. These corre-
sponded to compression prior to peak shear stress, shear
banding at peak failure and the deformation during steady-
state behaviour. The development of an improved tempo-
ral partitioning method, an improved prescription for band-
width tuning and identifying the correspondence between
network of network properties to specific observed failure
mechanisms in this and other granular tests is the subject
of ongoing research.
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