
IEICE Proceeding Series 
 
 
 
 
Coarse grain parallelization and acceleration of biochemical ODE 
simulation using GPGPU 

 
 
Kazushige Nakamura, Kei Sumiyoshi, Noriko Hiroi, Akira Funahashi 

 
 
Vol. 1 pp. 29-32 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Coarse grain parallelization and acceleration of biochemical ODE simulation
using GPGPU

Kazushige Nakamura† , Kei Sumiyoshi†, Noriko Hiroi†, Akira Funahashi†

†Graduate School of Science and Technology, Keio University
3141 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522 JAPAN

Abstract—We have accelerated the simulation of bio-
chemical ODE model described in SBML(Systems Biol-
ogy Markup Language), by using the parallel process-
ing approach on GPU. Compared with the implementation
on CPU, our simulator have accelerated about 12 times
faster in a single-precision number, and 10 times faster
in a double- precision. In this research, we have imple-
mented the sim- ulator which have the function to read
models dynamically from SBML files, and simulates the
model on GPU. Sev- eral existing works have done which
numerically solves ODE on GPU. However, those simula-
tors could not read models dynamically without generating
a code for every model. Our work achieved better porta-
bility than previ- ous researches by reading models dy-
namically from SBML files, without a re-compiling of the
codes. We implemented the solver by the classical Runge-
kutta method, which has known to be a basic factor of other
solvers, therefore we can develop advanced solvers in the
future based on our current simulator.

1. Introduction

In System Biology, a mathematical modeling is a useful
method for analyzing biochemical networks. Some of the
mathematical models are written by a boolean network or
a stochastic models, but most of the models are written by
Ordinary Differential Equation (ODE)[1]. Systems Biol-
ogy Markup Language(SBML) is the standard for describ-
ing biochemical models which is written by XML, and sev-
eral biochamical models are already written by SBML[2].
There are many software tools, which can read the models
written by SBML, such as CellDesigner[3] and Copasi[4].
When simulating an ODE, the result would be identical de-
pending on the initial condition. However, parameter fit-
tings are necessary to gain a feedback to the original exper-
iment. In addition, we can understand the model by ana-
lyzing a model, such as sensitivity analysis and bifurcation
analysis. When doing a parameter fitting or an analysis, we
must run multiple simulations to obtain results from vari-
ous parameter sets, which leads to find the most suitable
parameters. Therefore, a parameter fitting or an analysis of
a model will result to a large computational cost.

To solve this problem, our goal is to accelerate the sim-
ulator by using General Purpose Computation on Graphics
Processing Unit (GPGPU) to provide better environment

for researchers by individual level. GPGPU uses a device
called GPU, which is used to draw graphical elements in a
computer. GPU has better cost performance compared to
other parallel computational device, and it is easy to intro-
duce in a modern research lab[5].

Integration using GPU has been done by past researches,
and it has shown a good result[6]. In addition, there are a
research specific to the biochemical reaction, and it cal-
culates ODE by generating a code[7]. But the simula-
tor which generates a code for each models is difficult in
general-use for ODE solver. In our research, we imple-
mented a simulator which can read an SBML file dynami-
cally, so the generation of the code is not required.

In this paper, we introduce details about a GPU comput-
ing in chapter 2, implementation about solving a ODE on
the GPU in chapter 3, and profiling of the simulator and
discussion in chapter 4.

2. GPU Computation

Graphics Processing Unit (GPU) is used to draw graph-
ical elements in a computer. General Purpose computation
on GPU (GPGPU) uses GPU as general computational tool
other than drawing a graphic, such as hydrodynamic cal-
culations or vector analysis, which requires a large num-
ber of simple calculations. A GPU board, which is used
in GPGPU, is sold for modern consumer market, therefore
a GPU costs less than other high-performance calculation
system. A GPU costs about few hundred dollars in a retail
store, which is cheaper than parallel computational device
such as FPGA and PC cluster. The below listed are the
advantages of a GPU, as a computational device.

• Higher computational performance than a single CPU

• High growing of a performance throughout the decade

• Costs less than other parallel computational device

• Requires Less space

• Consume less energy per calculation

Typically, OpenCL and Compute Unified DeviceArchi-
tecture (CUDA) are used for GPGPU implementation.
CUDA is provided form NVIDIA Corp. and by using
CUDA, we can develop the program based on C. We have

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 29 -



+

! !

3 S0 5 S1

3 S0 ! 5 S1 ! +

int index;
myAST substance;

struct Math

ASTNodeType ope;
float real;

union myAST

index = -1
substance = 3.0

index = 0
substance = ∅

index = -2
substance = AST_TIMES

2012年5月23日水曜日

Figure 1: Searching an index of ”Math structure” determines whether it is a constant, a real number, or arithmetic operators. If it is a
real number of an arithmetric operator, gets corresponding information from shared ”substance”.

chosen to use CUDA for implementation, because it is de-
signed specific for GPU computing, and past researches are
using CUDA for implementation.

2.1. GPU architecture

Understanding GPU architecture is necesary for GPU
computing. GPUs are produced by NVIDIA Corp. and
AMD Corp., but using CUDA is limited to NVIDIA GPUs.
In this chapter, we introduce an architecture about NVIDIA
GPUs.

An architecture of GPU is different by their version
throughout the generation, but the ”Compute Capability
1.x” version has a same architecture between each other.
A high performance of GPU has achieved by many com-
putational unit called ”CUDA Core”. On the GPU chip,
there are several SM (Streaming multi processer), and in-
side each SM, there are computational unit called ”CUDA
Core”. 32 CUDA Core are loaded per one SM (Before the
recent version, there are 8 Streaming Processor per SM).
When GPU calculates in parallel, each multiprocessor cre-
ates, manages, schedules, and executes threads in groups of
32 parallel threads called warps in GPU computing. There-
fore, same type of the calculation must be done by same
warp threads to make efficient implementation.

2.2. Memory management

In order to calculate, GPU copies the data from a main
memory to their device memory. A GPU has six different
types of device memory, and they are Register, Local Mem-
ory, Shared Memory, Global Memory, Constant Memory,
and Texture Memory. In this chapter, we focus on Global
Memory and the Constant Memory.

Global Memory has a large size for read and writing, but
the speed of its access is slow. Currently, GPU executes a
half-warp (16 threads) per one access. The speed of access
from GPU to non-GPU memory is about hundred-times

slower than the access from GPU to GPU memory, such as
Global Memory, therefore we must concern about the time
required for memory access. An access to Global Memory
is done by 32, 54, or 128 bytes unit, which is aligned by 32,
54, or 128 bytes boundary. When accessing to the memory,
GPU adds up the memory address consisted by half-warp
(16 threads) which can execute at the same time, and trans-
fer all memories simultaneous by. This access can be lead
to the less access to the memory, which is called ”coalesc-
ing”, and GPU typically uses this memory access to gets an
efficient performance. Our implementation saves amounts,
reaction constants, and time course to global memory, and
we optimized a structure of the data so every access would
be coalesced.

Constant Memory is a ”read-only memory”, but this
memory can use a cache. Constant Memory can not allo-
cate a memory dynamically, and the capable memory size
is low as 64k bytes. In contrast, when multiple threads are
accessing on the same memory address, the cache becomes
active and efficient access will be archieved. In our im-
plementation, we have moved the read-only data to Con-
stant Memory, such as stoichiometry matrix and differen-
tial equation.

3. Implementation

In our research, we simulate a model by reading an
SBML model and solves an ODE. Reaction equation and
stoichiometry can obtained from an SBML file, but the
problem is how to handle a differential equation in GPU.
In SBML, we can get information from Abstract Syntax
Tree (AST), but GPU does not have an ability to use a re-
cursive function to scan the tree. To solve this problem, we
converted the tree structre to the array structure by Reverse
Polish Notation (RPN) and transfered to GPU. In addition,
we want to use Constant Memory for these data, so the size
of the data is prefered to be smallest as possible.

- 30 -



full ODE SMat store memory

mapk
1,024 time(sec.) 9.861 5.115 1.81 0.05 2.812

rate(%) 100 51.9 18.6 0.5 28.5

2,048 time(sec.) 10.613 5.128 1.953 0.059 3.516
rate(%) 100 48.3 18.4 0.6 33.1

CellCycle
1,024 time(sec.) 14.349 9.415 2.356 0.046 2.716

rate(%) 100 65.6 16.4 0.3 18.9

2,048 time(sec.) 15.141 9.599 2.739 0.031 3.222
rate(%) 100 63.4 18.1 0.2 21.3

Table 1: Execution time in each part of the simulation, compared to the total execution time. Execution time depends on the size of the
model and does not depend on the number of simulation.

In our implementation, we stored the equation written as
an AST node the node to the following data structure repre-
sented in Figure1. When describing a real number by float,
the size would be only 8 bytes per one ”Math” structure,
so it can be easly handled on the Constanty Memory. In
the current implementation, few functions such as ”Event”
and ”delay” in SBML is not available, but when consider
about delay function, we can still keep up with large mod-
els which has hundreds of reactions and species.

4. Result

We used a benchmark as MAPK model[8] in
BioModels[9], which has 10 reactions and 8 species. We
implemented a solver by two ways, which is a constant
step with a classical Runge-Kutta method, and the other is
a changeable step with a low storage RK[10]. In the bench-
mark, we used a method of a constant step with a classical
Runge-Kutta method, because it is easier to see the compu-
tational performance in GPU. We measured the simulation
time in T = 2, 000 with a step distance of h = 0.1, which
have a total of 20,000 steps, and calculated a mean of 10 re-
alizations. On the calculation, we used CPU of Intel Core
i7 2.8GHz, and the GPU is Tesla C2070. We measured the
time from starting an integration calculation to end of the
calculation. GPU has Global Memory of 5G bytes, with
Compute Capability of 2.0. On the GPU, we also included
the time of data transfer of time course to the measurement.
The time of initializing, such as reading an SBML file and
converting differetial eauations to RPN format are signifi-
cantly short so we ignored these initializations to the mea-
surement.

Change of a calculation time by 1 ∼ 2, 048 realization
has shown in Figure 2. The calculation time of CPU grows
linear by increasing the realization, but the calculation time
of GPU does not change. The slight increase of a time
would be leads to the allocation and copying of memories.
When running 2,048 realizations, GPU runs 12 times faster
in a single precise, and 10 times faster in a double precise
than CPU. In this benchmark, we recorded time courses
in 3G bytes of memories, so the allocating and copying of
the memory took about 30% of the total time, which is not

Figure 2: Simulation time on MAPK model. We have achieved
12 times faster in single precise, and 10 times faster in double
precise compared to CPU.

part of the calculation. From this result, this simulator is
said to be very useful for flexible calculation and analyzing
purpose which does not records the time courses.

In addition, there are no big effect on the calculation
speed between single and double precise. We must pay
an attention to the decreace in occupancy and increase in
memory transfer size, according to the many usage of Reg-
ister. We used a recent GPU which has more Register for
double precise than GPU such as older than Fermi genera-
tion, so it seems to be no significant change between single
and double precise calculation, unless we satisfy the coa-
lescing rule. When implementing an Implicit Method for
calculation, or implementing ”Algebraic Rule” in SBML,
the optimizing implementation for a double precise will be
necessary, but from our result, it can say that better calcu-
lating efficiency could be archived than CPU.

Execution time of 1,024 and 2,048 realizations is shown
in Table 1. In Table 1 ”ODE” is the part of solving a dif-
ferential equation and calculating each reaction. ”SMat
(Stoichiometry Matrix)” is the part of calculating flux of
species by stoichiometry and each reaction. ”Store” is the
part of storing the time course to Global Memory. ”Mem-
ory” is the other part such as allocating or copying the

- 31 -



4memory. To show the contrast, the execution time of
CellCycleModel[11] is shown, which is listed in number
181 of BioModels, which has 18 reactions and 6 species.
The number of ASTNode of MAPK is 106, and CellCy-
cle model is 156 respectively. The execusion time of ODE
is proportional to the number of ASTNode, therefore sim-
ulating a larger model would be a bottle-neck of the total
execution time. In contrast, the execution time in SMat, or
stoichimetry matrix is depending on the species and reac-
tion number, so the execution time would be larger, but the
calculation of ODE is the most part of the whole execu-
tion time. Using list structure instead of a matrix can use
Constant Memory even on the large model.

To solve the problem of ODE caltulation time, using
the ”fine-grained” parallelization method would be useful.
Making many threads as same as the number of reaction
(when the reaction number exceeds the block’s warp num-
ber, it becomes the block’s maximum warp number) could
make each warp to calculate different reaction, leads to
shorter calculation of ODE. In addition, SMat calculation
can also parallelized, so additional acceleration of the sim-
ulation is expected.

5. Conclusion

In this research, we have implemented a simulator which
executed an simulation about 10 times faster than CPU.
Based on this work, we can implement Implicit Method
and other functions optimized to SBML, to execute param-
eter fittings and parameter scans. The bottle-neck of the
calculation can be solved by implementing the fine-grained
parallelization method, and this implementation can lead to
more acceleration on the simulation.

References

[1] K. Hübner, S. Sahle, and U. Kummer. Applications
and trends in systems biology in biochemistry. FEBS
Journal, Vol. 278, No. 16, pp. 2767–2857, 2011.

[2] M. Hucka, A. Finney, B.J. Bornstein, S.M. Keat-
ing, B.E. Shapiro, J. Matthews, B.L. Kovitz, M.J.
Schilstra, A. Funahashi, Doyle J.C., and H. Kitano.
Evolving a lingua franca and associated software in-
frastructure for computational systems biology: t he
Systems Biology Markup Language (SBML) project.
IEE Systems Biology, Vol. 1, No. 1, pp. 41–53,
September 2004.

[3] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Moro-
hashi, N. Kikuchi, and H. Kitano. CellDesigner 3.5:
A versatile modeling tool for biochemical networks.
Proceedings of the IEEE, Special Issue: Computa-
tional Systems Biology, Vol. 96, No. 8, pp. 1254–
1265, August 2008.

[4] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle,
N. Simus, M. Singhal, L. Xu, P. Mendes, and
U. Kummer. COPASI–a COmplex PAthway SImu-
lator. Bioinformatics, Vol. 22, No. 24, p. 3067, 2006.

[5] NVIDIA CUDA Compute Unified Device
Architecture Programming Guide Version
4.1. http://developer.nvidia.com/

nvidia-gpu-computing-documentation.

[6] L. Murray. Gpu acceleration of runge-kutta integra-
tors. Parallel and Distributed Systems, IEEE Trans-
actions on, No. 99, pp. 1–1, 2011.

[7] J. Ackermann, P. Baecher, T. Franzel, M. Goesele,
K. Hamacher, et al. Massively-parallel simulation of
biochemical systems. Proceedings of Massively Par-
allel Computational Biology on GPUs, 2009.

[8] B.N. Kholodenko. Negative feedback and ultrasen-
sitivity can bring about oscillations in the mitogen-
activated protein kinase cascades. European Jour-
nal of Biochemistry, Vol. 267, No. 6, pp. 1583–1588,
2000.

[9] Nicolas Le Novère, Benjamin Bornstein, Alexander
Broicher, Mélanie Courtot, Marco Donizelli, Har-
ish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra,
Bruce Shapiro, Jacky L. Snoep, and Michael Hucka.
BioModels Database: a free, centralized database of
curated, published, quantitative kinetic models of bio-
chemical and cellular systems. Nucleic Acids Re-
search, Vol. 34, No. Database issue, pp. D689–D691,
Jan 2006.

[10] C.A. Kennedy, M.H. Carpenter, and R.M. Lewis.
Low-storage, explicit runge–kutta schemes for the
compressible navier–stokes equations. Applied nu-
merical mathematics, Vol. 35, No. 3, pp. 177–219,
2000.

[11] K. Sriram, G. Bernot, F. Kepes, et al. A minimal
mathematical model combining several regulatory cy-
cles from the budding yeast cell cycle. IET systems
biology, Vol. 1, No. 6, pp. 326–341, 2007.

- 32 -




