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Abstract—This paper gives an important theorem
on a solution curve of a class of nonlinear equations
consisting of n variables and (n — 1) equations, which
is obtained from a typical nonlinear equation F(x) +
Axz = b by deleting the first equation. The theorem is
obtained under the assumption that A is an Q-matrix,
which is a generalization of a P-matrix and a positive
definite matrix. From this theorem and the previous
results we can derive some very important properties
on a solution curve. That is, the solution curves consist
of only two types of curves.

1. Introduction

One of the authors once published the paper[1]
which gave a necessary and sufficient conditions for a
class of n-variable nonlinear equations F(x) + Az = b
to have a finite number of solutions. These equations
are very important in nonlinear circuit theory and have
been investigated for a long time in particular from a
view point of the uniqueness of the solution.

In [1] Nishi and Kawane defined a new class of matri-
ces called an Q-matrix, which is closely related to the
maximum number of solutions. To investigate it, we
have to investigate properties of solution curves of the
equation obtained from F(z) +Az = b by deleting the
first equation. From the theorem we see that at the ex-
tremal point on a solution curve with respect to x1, the

inequality @) - ( holds for some i. This implies that

dx?
solution curves have no maximal point with respect to
x1. As the results of the above we show that the solu-
tion curves consist of only two types of curves: One is
a monotonically increasing curve with respect the vari-
able z; ranging from —oo to +o00, which means that
the curve possesses neither local minimum nor global
maximum with respect to 1. The other has one global
minimum (but not local minimum) with respect to ;.

2. Formulation of the problem, an ()-matrix
and the previous results[1]

2.1. Formulation of the problem

We consider the nonlinear equations of n variables:

F(z)+ Az =0, (1)

where
fi(z1) a11 a2 -+ Qin
= | PO g em e
Trn(zn) anl Qn2  *+  Gnn
b is a constant vector, and f; (i =1,2,---,n) are suf-

ficiently smooth (nonlinear) onto functions of x; satis-
fying

%fi(a:i)>0 for Vo, (i=1,2,-,n) (2)
2
@fi(xi)>0 forVe; (i=1,2,---,n) (3)

2.2. The Q-matrix

In this paper the “Q-matrix” defined below plays a
definitely important role.
Definition 1: Let B be a real square matrix and as-
sume that by using an appropriate permutation matrix
P the matrix B can be changed into the form

B B .
011 BZ } (Bjy; are square matrices)

(4)
Then B is said to be a reducible matriz. The matrix
which is not reducible is said to be irreducible.
Concerning the maximum number of solutions of
Eq. (1) we can assume without loss of generality that
A is irreducible.
Definition 2: Let B be a real square matrix of order
n. We say that B satisfies the Q-sign condition if for
each i(i=1,2,--- ,n)

bii < 0, then bij <0 for Vj(?é Z) (5)

PBPT = [

Definition 3 (Q2-matrix): An irreducible matrix A is
called an Q-matriz or is written as A € Q, if (A+D)~!
satisfies the Q-sign condition for VD > 0 satisfying
|A+ D| #0.!

If A is reducible, then by an appropriate permuta-
tion matrix P it can be changed into a block upper
triangle matrix of the form:

A A A
papt=| 0 Aw oAl
0 0 Ak

Henceforth D, Do and D denote a positive diagonal matrix
of an appropriate size.
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where A;; (i = 1,--- ,k) are square and irreducible
matrices. Then A is called an Q-matriz if all of Aj;;
(i=1,---,k) are Q-matrices.

The Q-matrix is closely related to the maximum
number of solutions of Eq. (1).

3. Main theorems

3.1. Solution curves

In this paper we will investigate about the last (n —
1) equations of Eq. (1), i.e.,

{ fa(w2)
P +

fn(@n)

a1 a2 - a2n:|

an1 an2 e Ann

We call Eq. (7) solution curve equations of Eq. (1) or
simply SC' equations. The set of points satisfying Eq.
(7) is usually an assembly of one-dimensional curves in
n-dimensional space. We call the set of those points
solution curves or paths. Solution curves consist of sev-
eral disconnected curves and each separated solution
curve is denoted by C or C; (see Fig. 1, for example).
The purpose of this paper is to clarify some proper-
ties of solution curves in order to investigate the maxi-
mum number of solutions of Eq. (1). Throughout this
paper we assume
Assumption 1 A € Q and A is irreducible.

3.2. Jacobian matrix .Jj

The Jacobian matrix Jy of Eq. (7) is given as

a1 ags - zg
Jo= | TP T T o (8)
an1  QAp2 Gpz - a4,
where
aéi :aii+di, dZ = dfl >0 (9)
dl‘i

In [2] we gave the following remarkable theorem:
Theorem 1: The Jacobian matrix Jy in Eq.(8) is of
full rank, i.e., rank(Jy) = n — 1 for VD > 0 under
Assumption 1.

From Theorem 1, implicit function theorem, and
path theorem [3] we see that solution curves (paths)
satisfying Eq. (7) are smooth and have neither cross
point nor endpoint nor bifurcation point. Fig. 1 shows
some typical examples of solution curves (C; ~ Cs).
Here the vertical axis denotes the variable x; and the
horizontal axis denotes the other (n — 1) variables
To ~ x, denoted simply by Xg. So the figure is drawn
to focus on the direction of 1. The curve C is a con-
tinuous function ranging —oco < x1 < 0o, Cs is a loop,
Cj5 is a lower bounded curve, Cy is an upper bounded
curve, and C5 is both upper and lower bounded with
respect to xy.

x

Ql Cl QBUOP,
002 Q
e
/ \ Xo

Fig. 1 Example of typical solution curves

3.3. The maximal point of the solution curve
with respect to z;

Let C be a solution curve. An extremal point on C'
with respect to x7 means the point at which dd—“;} =0

* where p is the path parameter [3] or one of an appro-

priate variables among ;.

The main purpose of this paper is to give the fol-
lowing important theorem:
Theorem 2: A solution curve has no maximal point
with respect to x1 if A € Q and if A is irreducible.

Proof is in Section 4.1.

As the result of this theorem we conclude that there
is no points such as Q, Q2, and Qg in Fig. 1.
Corollary of Theorem 2: The solution curves in-
clude no loop.

3.4. Saturation of a solution curve with respect
to x1

Concerning saturation curve (see C5 in Fig. 1) in
the direction of 1, we have:
Theorem 3: Suppose that A € Q. Then a solution
curve does not saturate upward with respect to x1, but
can saturate downward.

Proof is in Section 4.2

3.5. Solution curves for A € Q

By using Theorems 1, 2 and 3 we see that under
Assumption 1 solution curves consist of only two types

of curves:
o d Q
Xo X
7. | °

(b)

Fig. 2 Example of typical solution curves for A € Q)

One is a monotonically increasing curve with respect
the variable 7 ranging from —oo to +oo(such as C,
Cy and Cjy in Fig. 2(a)), which means that the curve
neither possesses local and global maximum point nor
saturates upward with respect to xy. The other is a
curve having the global minimum but not a local min-
imum (such as C3 and C5 in Fig. 2(a)). These char-
acteristics are the same as those obtained in the case
of n =2.
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4. Proof of Theorems 2 and 3
4.1. Notations of submatrices and minors of A
The notation A( ;i 2otk ) (6 <1301 <

]2 e ]k
Jji+1) denotes the matrix obtained from A by deleting

the i1-, i2-, - -+, ix-th rows and the j1-, 49-, -+ -, ji-th
columns. ' ‘
.. PRI P8 o
Similarly AA( D ) =
(_1)22:1 TR S jh|A( 1 2 et 0k )‘
JioJg2 o gk

4.2. Proof of Theorem 2

We want to prove Theorem 2 for general case of n.
But for simplicity we describe the proof for the case of
n = 5, because we can easily generalize it for n.

Let A’ = A+ D(D > 0). We consider the behavior
of a solution curve C in the neighbor of an extremal
point x, with respect to x1. So we can assume that

1

AA,(l):o at z, on C (10)

Eq. (7) is rewritten as

5
fl(l‘l) —l—Zaijxj = bl (Z = 2,"' ,5)

j=1

(11)

Since x1 is not appropriate as an independent vari-
able around z, on C, we use another variable among
(i = 2,---,5) as an independent variable. For this

purpose x; has to be chosen so that AA/< 1 ) # 0.

Since A € Q (as well as A’ € Q) and A is irre-
ducible, we see from Theorem 2 that the rank of Jy is
4 and therefore under Eq. (10) there necessarily exists

a nonzero cofactor among AA/( 1 ) (i = 2,3,4,5).

Without loss of generality we assume that

/
az1 Qoo Q23 424

AA,<é) S Dl Al B X (R ()

41  A42 Q43  Agqq
as1  as2 a53 Q54

and we regard x5 as the independent variable for rep-
resenting C'.

Since
5
AA'( é ) :ZQGMAA’( 1 é ) (13)
i—
we see that
Lemma 1:
AA/( L: );éo for Ji (i =2,3,4,5)  (14)

We will investigate the behavior of z1(z5), x2(x5),
x3(xs5), and z4(z5). On the curve C' Eq. (11) holds

identically. Differentiating Eq.

x5, we have

(11) with respect to

4
dfi d.%‘i d
=0(i=2,3,4 15
dxidm5+]z_: i e L+ ags (i= ) (15)
dfs dx;
=0 16
dI5+Z 5Jd !t ass (16)
or in the matrix form
’ dz:l
az1  Qgo a/23 a24 %3 —azs
asy Q32 Gz G34 des | — | —@s5 (17)
Q41 Qa2 Q43 Ay g%z —Q45
as1  Gs2 Q53 G54 dry —ag;
d:()5
from which we have
1
A ’ .
i, (i)
Yoo N7 (1=2,3,4) (18)

diL’5

Differentiating Eqs. (15)—(16) again with respect to
x5, we have

2
d2fi dmz dfz d2$z + Z (19)
az;
dz? \ dzs dml dr? = 4 ! d
j=1
d2f5
d + E 5] d (20)
or in the matrix form
2
d%zy d?fy [ dza
/ da?2 dz3 \ des
G21 G22  G23 G24 s 20 { dea\2
as1 a3z asg ai’,4 d;sg _ de? \ dzs
a41 Q42 Q43 Qg dd;; d2f4 (dz4)2
as1  as2 G533 Q54 20 daj \ dzs
T4 d2f
dx? 2
5 da?
(21)

2
) for ‘Z;“’g as

ey _ i \&fi ((dzi\’
def 5, (IHZAA'( 5)dw? (d%)

1 5 d2f5
ae(h 5 )]

Our purpose is to show that

We solve Egs. (21

ot

(22)

dzwl

> 0. Since
dzg

2
d2f : (@) > 0, we will prove the following sufficient

dz dz
conditions for 4 Il > 0.
Proposition 1 If A € Q and if A is irreducible, then

. [ 1 1 i
AA/( i >AA,( 1 5 )
>0 (i=2,3,45 (23)

s )
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holds and at least one inequality holds in Eq. (23).

Proof of Theorem 2 is a little similar to that of The-
orem 1 [2]. To prove the proposition we will prove
Lemmas 2-4 below.

Let E be a diagonal matrix F = diag [e1, €2, -+,

€n] where |¢;|(# 0) (i = 2,3,4,5) are sufficiently small
(more exactly 0 < |e;| < d;), while ¢ satisfies —d; <
€1 < 0o. Then A’A—l-Ee Q.
Lemma 2: Let B be an m x m Q-matrix and suppose
that |B'| = |B+ D| =0 (D > 0). Let E be an m x m
diagonal matrix like E. Then elements of each row of
the cofactor matrix of B’ + E(€ Q) are all nonnegative
or all nonpositive.

Proof) Note that |B’ + FE| is a multilinear polyno-
mial of the variables €; and does not vanish identically
because of the existence of the term [, €. Since
|B'| = 0 holds, |B’ 4+ E| has no nonzero constant term
and therefore can be both positive and negative de-
pending on an appropriate choice of ¢;. If a row of

the cofactor matrix of (B’ 4+ E)(€ Q) includes both
a positive element and a negative element, then we

can choose ¢; such that (B’ + E)~! does not satisfy
the Q-sign condition. This contradicts the assumption

B'+F e Qand completes the proof of Lemma 2.
Let B/ = A'( 1 ) and we apply Lemma 2 to B’ =
1
a( 1)
We can choose €1 (> 0) sufficiently large so that

ay, + € ai.

a, (A’+E)< . )
elAA/+E( ) (24)
AA'+E( ; ) ~ €1AA'+E( i ) (i =2,3,4)(25)
hold for almost all €; (|e;|: sufficiently small)(i =

2, ,5).
Lemma 3:

|A" + E|

Q

1
1
1
1

AA/< ; ) £0 (i=2,3,4)

Proof of Lemma 3) Using Eqs. (24) and (25). we
have

(A +E)"!

(26)

2
AA’+E AA’-&-E< 1
1

1 AA’+E ElAA/+E< 1

1
wdwe( 1) -
sann( 5 )

N = =

Q

[
\]

ElAA’+E 1

5
5
s 1)
1 5
EIAA/+E( 1 2
1 5
EIAA’+E< 1 5

NN N——
N————

Suppose for example AAr< ; ) = (. Then

AA/+E( ; ) = 0 independent of the values €; (28)

The reason is the same as the proof of Theorem 1
(see Ref. [2]). Then we see that A’ is reducible(see
Ref. [2]). This contradicts with Assumption 1. This
completes the proof of Lemma 3.

From Eq. (27) and Lemma 2 we have
Lemma 4:

sw(] 1)

sverl 1)

From Lemmas 1, 3 and 4 we have Proposition 1.

>0(i=2345  (29)

4.3. Proof of Theorem 3

In this section we examine the behavior of the so-
lution curve which is approaching to the saturation in
the direction of x7.

The proof of Theorem 3 can be obtained in a similar
way as that of Theorem 2 by replacing Eqgs. (10) with

1

AA/( 1 ) ~ 0 at x, (30)

5. Conclusions

This paper gives two important theorems on the so-
lution curves of Eq. (7) under Assumption 1. As the
results we see that there are only two types of solution
curves.
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