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Abstract—This paper gives an important theorem
on a solution curve of a class of nonlinear equations
consisting of n variables and (n− 1) equations, which
is obtained from a typical nonlinear equation F (x) +
Ax = b by deleting the first equation. The theorem is
obtained under the assumption that A is an Ω-matrix,
which is a generalization of a P -matrix and a positive
definite matrix. From this theorem and the previous
results we can derive some very important properties
on a solution curve. That is, the solution curves consist
of only two types of curves.

1. Introduction

One of the authors once published the paper[1]
which gave a necessary and sufficient conditions for a
class of n-variable nonlinear equations F (x) +Ax = b
to have a finite number of solutions. These equations
are very important in nonlinear circuit theory and have
been investigated for a long time in particular from a
view point of the uniqueness of the solution.

In [1] Nishi and Kawane defined a new class of matri-
ces called an Ω-matrix, which is closely related to the
maximum number of solutions. To investigate it, we
have to investigate properties of solution curves of the
equation obtained from F (x) +Ax = b by deleting the
first equation. From the theorem we see that at the ex-
tremal point on a solution curve with respect to x1, the
inequality d2x1

dx2
i
> 0 holds for some i. This implies that

solution curves have no maximal point with respect to
x1. As the results of the above we show that the solu-
tion curves consist of only two types of curves: One is
a monotonically increasing curve with respect the vari-
able x1 ranging from −∞ to +∞, which means that
the curve possesses neither local minimum nor global
maximum with respect to x1. The other has one global
minimum (but not local minimum) with respect to x1.

2. Formulation of the problem, an Ω-matrix
and the previous results[1]

2.1. Formulation of the problem

We consider the nonlinear equations of n variables:

F (x) +Ax = b, (1)

where

F (x) =




f1(x1)
f2(x2)
· · ·

fn(xn)


 , A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann


 ,

b is a constant vector, and fi (i = 1, 2, · · · , n) are suf-
ficiently smooth (nonlinear) onto functions of xi satis-
fying

d

dxi
fi(xi) > 0 for ∀xi (i = 1, 2, · · · , n) (2)

d2

dx2
i

fi(xi) > 0 for ∀xi (i = 1, 2, · · · , n) (3)

2.2. The Ω-matrix

In this paper the “Ω-matrix” defined below plays a
definitely important role.
Definition 1: Let B be a real square matrix and as-
sume that by using an appropriate permutation matrix
P the matrix B can be changed into the form

PBPT =
[
B11 B12

0 B22

]
(Bii are square matrices)

(4)
Then B is said to be a reducible matrix. The matrix
which is not reducible is said to be irreducible.

Concerning the maximum number of solutions of
Eq. (1) we can assume without loss of generality that
A is irreducible.
Definition 2: Let B be a real square matrix of order
n. We say that B satisfies the Ω-sign condition if for
each i(i = 1, 2, · · · , n)

bii < 0, then bij ≤ 0 for ∀j( 6= i) (5)

Definition 3 (Ω-matrix): An irreducible matrix A is
called an Ω-matrix or is written as A ∈ Ω, if (A+D)−1

satisfies the Ω-sign condition for ∀D > 0 satisfying
|A+D| 6= 0.1

If A is reducible, then by an appropriate permuta-
tion matrix P it can be changed into a block upper
triangle matrix of the form:

PAPT =



A11 A12 · · · A1k

0 A22 · · · A2k

· · · · · · · · · · · ·
0 0 · · · Akk


 , (6)

1Henceforth D, D0 and D̂ denote a positive diagonal matrix
of an appropriate size.
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where Aii (i = 1, · · · , k) are square and irreducible
matrices. Then A is called an Ω-matrix if all of Aii
(i = 1, · · · , k) are Ω-matrices.

The Ω-matrix is closely related to the maximum
number of solutions of Eq. (1).

3. Main theorems

3.1. Solution curves

In this paper we will investigate about the last (n−
1) equations of Eq. (1), i.e.,

[
f2(x2)
· · ·

fn(xn)

]
+

[
a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

]

x1

x2

· · ·
xn


 =

[
b2
· · ·
bn

]
.

(7)
We call Eq. (7) solution curve equations of Eq. (1) or

simply SC equations. The set of points satisfying Eq.
(7) is usually an assembly of one-dimensional curves in
n-dimensional space. We call the set of those points
solution curves or paths. Solution curves consist of sev-
eral disconnected curves and each separated solution
curve is denoted by C or Ci (see Fig. 1, for example).

The purpose of this paper is to clarify some proper-
ties of solution curves in order to investigate the maxi-
mum number of solutions of Eq. (1). Throughout this
paper we assume
Assumption 1 A ∈ Ω and A is irreducible.

3.2. Jacobian matrix J0

The Jacobian matrix J0 of Eq. (7) is given as

J0 =



a21 a′22 a23 · · · a2n

a31 a32 a′33 · · · a3n

· · · · · · · · · · · · · · ·
an1 an2 an3 · · · a′nn


 (8)

where

a′ii = aii + di, di =
dfi
dxi

> 0 (9)

In [2] we gave the following remarkable theorem:
Theorem 1: The Jacobian matrix J0 in Eq.(8) is of
full rank, i.e., rank(J0) = n − 1 for ∀D > 0 under
Assumption 1.

From Theorem 1, implicit function theorem, and
path theorem [3] we see that solution curves (paths)
satisfying Eq. (7) are smooth and have neither cross
point nor endpoint nor bifurcation point. Fig. 1 shows
some typical examples of solution curves (C1 ∼ C5).
Here the vertical axis denotes the variable x1 and the
horizontal axis denotes the other (n − 1) variables
x2 ∼ xn denoted simply by X0. So the figure is drawn
to focus on the direction of x1. The curve C1 is a con-
tinuous function ranging −∞ < x1 <∞, C2 is a loop,
C3 is a lower bounded curve, C4 is an upper bounded
curve, and C5 is both upper and lower bounded with
respect to x1.

Fig. 1 Example of typical solution curves
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3.3. The maximal point of the solution curve
with respect to x1

Let C be a solution curve. An extremal point on C
with respect to x1 means the point at which dx1

dp = 0
where p is the path parameter [3] or one of an appro-
priate variables among xi.

The main purpose of this paper is to give the fol-
lowing important theorem:
Theorem 2: A solution curve has no maximal point
with respect to x1 if A ∈ Ω and if A is irreducible.

Proof is in Section 4.1.
As the result of this theorem we conclude that there

is no points such as Q1, Q2, and Q3 in Fig. 1.
Corollary of Theorem 2: The solution curves in-
clude no loop.

3.4. Saturation of a solution curve with respect
to x1

Concerning saturation curve (see C5 in Fig. 1) in
the direction of x1, we have:
Theorem 3: Suppose that A ∈ Ω. Then a solution
curve does not saturate upward with respect to x1, but
can saturate downward.

Proof is in Section 4.2

3.5. Solution curves for A ∈ Ω

By using Theorems 1, 2 and 3 we see that under
Assumption 1 solution curves consist of only two types
of curves:

Fig. 2 Example of typical solution curves for A ∈ Ω
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Q

(b)

One is a monotonically increasing curve with respect
the variable x1 ranging from −∞ to +∞(such as C1,
C2 and C4 in Fig. 2(a)), which means that the curve
neither possesses local and global maximum point nor
saturates upward with respect to x1. The other is a
curve having the global minimum but not a local min-
imum (such as C3 and C5 in Fig. 2(a)). These char-
acteristics are the same as those obtained in the case
of n = 2.
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4. Proof of Theorems 2 and 3

4.1. Notations of submatrices and minors of A

The notation A
(
i1 i2 · · · ik
j1 j2 · · · jk

)
(il < il+1; jl <

jl+1) denotes the matrix obtained from A by deleting
the i1-, i2-, · · · , ik-th rows and the j1-, i2-, · · · , jk-th
columns.

Similarly ∆A

(
i1 i2 · · · ik
j1 j2 · · · jk

)
=

(−1)
∑k
h=1 ih+

∑k
h=1 jh |A

(
i1 i2 · · · ik
j1 j2 · · · jk

)
|

4.2. Proof of Theorem 2

We want to prove Theorem 2 for general case of n.
But for simplicity we describe the proof for the case of
n = 5, because we can easily generalize it for n.

Let A′ = A+D(D > 0). We consider the behavior
of a solution curve C in the neighbor of an extremal
point x∗ with respect to x1. So we can assume that

∆A′
(

1
1

)
= 0 at x∗ on C (10)

Eq. (7) is rewritten as

fi(xi) +
5∑

j=1

aijxj = bi (i = 2, · · · , 5) (11)

Since x1 is not appropriate as an independent vari-
able around x∗ on C, we use another variable among
xi(i = 2, · · · , 5) as an independent variable. For this

purpose xi has to be chosen so that ∆A′
(

1
i

)
6= 0.

Since A ∈ Ω (as well as A′ ∈ Ω) and A is irre-
ducible, we see from Theorem 2 that the rank of J0 is
4 and therefore under Eq. (10) there necessarily exists

a nonzero cofactor among ∆A′
(

1
i

)
(i = 2, 3, 4, 5).

Without loss of generality we assume that

∆A′

(
1
5

)

=

∣∣∣∣∣∣∣

a21 a′22 a23 a24

a31 a32 a′33 a34

a41 a42 a43 a′44

a51 a52 a53 a54

∣∣∣∣∣∣∣


 6= 0 (12)

and we regard x5 as the independent variable for rep-
resenting C.

Since

∆A′
(

1
5

)
=

5∑

i=2

ai1∆A′
(

1 i
1 5

)
(13)

we see that
Lemma 1:

∆A′
(

1 i
1 5

)
6= 0 for ∃i (i = 2, 3, 4, 5) (14)

We will investigate the behavior of x1(x5), x2(x5),
x3(x5), and x4(x5). On the curve C Eq. (11) holds

identically. Differentiating Eq. (11) with respect to
x5, we have

dfi
dxi

dxi
dx5

+
4∑

j=1

aij
dxj
dx5

+ a25 = 0 (i = 2, 3, 4) (15)

df5

dx5
+

4∑

j=1

a5j
dxj
dx5

+ a55 = 0 (16)

or in the matrix form



a21 a′22 a23 a24

a31 a32 a′33 a34

a41 a42 a43 a′44
a51 a52 a53 a54







dx1
dx5
dx2
dx5
dx3
dx5
dx4
dx5


 =



−a25

−a35

−a45

−a′55


 (17)

from which we have

dxi
dx5

=
∆A′

(
1
i

)

∆A′
(

1
5

) (i = 2, 3, 4), (18)

Differentiating Eqs. (15)–(16) again with respect to
x5, we have

d2fi
dx2

i

(
dxi
dx5

)2

+
dfi
dxi

d2xi
dx2

5

+
4∑

j=1

a2j
d2xj
dx2

5

= 0 (19)

d2f5

dx2
5

+
4∑

j=1

a5j
d2xj
dx2

5

= 0 (20)

or in the matrix form



a21 a′22 a23 a24

a31 a32 a′33 a34

a41 a42 a43 a′44

a51 a52 a53 a54







d2x1
dx2

5
d2x2
dx2

5
d2x3
dx2

5
d2x4
dx2

5




= −




d2f2
dx2

2

(
dx2
dx5

)2

d2f3
dx2

3

(
dx3
dx5

)2

d2f4
dx2

4

(
dx4
dx5

)2

d2f5
dx2

5




(21)

We solve Eqs. (21) for d2x1
dx2

5
as

d2x1

dx2
5

=
1

∆A′

(
1
5

)
[

4∑
i=2

∆A′

(
1 i
1 5

)
d2fi
dx2

i

(
dxi
dx5

)2

+ ∆A′

(
1 5
1 5

)
d2f5

dx2
5

]
(22)

Our purpose is to show that d2x1
dx2

5
> 0. Since

d2fi
dx2
i

(
dxi
dx5

)2

≥ 0, we will prove the following sufficient

conditions for d2x1
dx2

5
> 0.

Proposition 1: If A ∈ Ω and if A is irreducible, then

∆2
A′

(
1
i

)
∆A′

(
1 i
1 5

)

∆A′

(
1
5

) ≥ 0 (i = 2, 3, 4, 5) (23)
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holds and at least one inequality holds in Eq. (23).
Proof of Theorem 2 is a little similar to that of The-

orem 1 [2]. To prove the proposition we will prove
Lemmas 2–4 below.

Let E be a diagonal matrix E = diag [ε1, ε2, · · · ,
εn] where |εi|(6= 0) (i = 2, 3, 4, 5) are sufficiently small
(more exactly 0 < |εi| < di), while ε1 satisfies −d1 <
ε1 <∞. Then A′ + E ∈ Ω.
Lemma 2: Let B̂ be an m×m Ω-matrix and suppose
that |B̂′| = |B̂ + D̂| = 0 (D̂ > 0). Let Ê be an m×m
diagonal matrix like E. Then elements of each row of
the cofactor matrix of B̂′+Ê(∈ Ω) are all nonnegative
or all nonpositive.

Proof) Note that |B̂′ + Ê| is a multilinear polyno-
mial of the variables εi and does not vanish identically
because of the existence of the term

∏m
i=1 εi. Since

|B̂′| = 0 holds, |B̂′+ Ê| has no nonzero constant term
and therefore can be both positive and negative de-
pending on an appropriate choice of εi. If a row of
the cofactor matrix of (B̂′ + Ê)(∈ Ω) includes both
a positive element and a negative element, then we
can choose εi such that (B̂′ + Ê)−1 does not satisfy
the Ω-sign condition. This contradicts the assumption
B̂′ + Ê ∈ Ω and completes the proof of Lemma 2.

Let B̂′ = A′
(

1
1

)
and we apply Lemma 2 to B̂′ =

A′
(

1
1

)
.

We can choose ε1(> 0) sufficiently large so that

|A′ + E| =

∣∣∣∣∣
a′11 + ε1 a1·
a·1 (A′ + E)

(
1
1

)
∣∣∣∣∣

≈ ε1∆A′+E

(
1
1

)
(24)

∆A′+E

(
i
i

)
≈ ε1∆A′+E

(
1 i
1 i

)
(i = 2, 3, 4)(25)

hold for almost all εi (|εi|: sufficiently small)(i =
2, · · · , 5).
Lemma 3:

∆A′
(

1
i

)
6= 0 (i = 2, 3, 4) (26)

Proof of Lemma 3) Using Eqs. (24) and (25). we
have (

A′ + E
)−1

≈ 1

ε1∆A′+E

(
1
1

)




∆A′+E

(
1
1

)
∆A′+E

(
2
1

)

∆A′+E

(
1
2

)
ε1∆A′+E

(
1 2
1 2

)

· · · · · ·
∆A′+E

(
1
5

)
ε1∆A′+E

(
1 2
1 5

)

· · · ∆A′+E

(
5
1

)

· · · ε1∆A′+E

(
1 5
1 2

)

· · · · · ·
· · · ε1∆A′+E

(
1 5
1 5

)




(27)

Suppose for example ∆A′
(

1
2

)
= 0. Then

∆A′+E

(
1
2

)
≡ 0 independent of the values ε1 (28)

The reason is the same as the proof of Theorem 1
(see Ref. [2]). Then we see that A′ is reducible(see
Ref. [2]). This contradicts with Assumption 1. This
completes the proof of Lemma 3.

From Eq. (27) and Lemma 2 we have
Lemma 4:

∆A′+E

(
1 i
1 5

)

∆A′+E

(
1
5

) ≥ 0 (i = 2, 3, 4, 5) (29)

From Lemmas 1, 3 and 4 we have Proposition 1.

4.3. Proof of Theorem 3

In this section we examine the behavior of the so-
lution curve which is approaching to the saturation in
the direction of x1.

The proof of Theorem 3 can be obtained in a similar
way as that of Theorem 2 by replacing Eqs. (10) with

∆A′
(

1
1

)
≈ 0 at x∗ (30)

5. Conclusions

This paper gives two important theorems on the so-
lution curves of Eq. (7) under Assumption 1. As the
results we see that there are only two types of solution
curves.
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