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 Alterations of functional central nervous 
system networks occur as the result of traumatic 
brain injury. Characterization of functional network 
structure is therefore an essential element in the 
initial evaluation of these patients and in the 
longitudinal assessment of the response to treatment. 
Several methods of dynamical analysis have been 
used to quantify CNS reorganization during recovery. 
They include measures of inter-regional 
synchronization, analysis of network geometries 
(small world models) and the identification of causal 
networks. This project began with the identification 
of causal networks as its objective. This form of 
analysis moves beyond correlation by quantifying the 
direction and magnitude of information flow. An 
immediate difficulty presented itself. Consider a 
simple network consisting of two channels, Channel 
A and Channel B. Suppose that from time 0t  to 1t  

Channel A is a strong causal driver of Channel B, and 
suppose further that from time 1t  to 2t  Channel B 

drives Channel A. If a causal analysis is constructed 
over the temporal epoch 0t  to 2t , a failure to detect 

any causal relationships will probably result. It 
follows that an identification of transition 
chronometry is the first step in causality analysis. 
There are several classes of mathematical 
technologies for identifying transitions. Here we 
consider methods based on the examination of 
embedded data. 
 
 Let }x,x,x{ N21   be a scalar time 

series recorded with a uniform sampling interval of 
Δt. These data are used to construct a set of points 

m
k}Z{   

)x,x,x,x(Z L)1m(kL2kLkkk    

Parameter m is the embedding dimension and L is the 
lag. The window is the temporal epoch spanned by a 

single point with a length given by (m-1)LΔt. For 
point iZ  in the embedding space, the corresponding 

time it  is the midpoint of the temporal epoch 

spanned from ix at time (i-1)Δt to L)1m(ix   at 

time (i+(m-1)L-1)Δt. The original time series has 

now become a trajectory in m , 

 321 ZZZ  

 
 Embedding is motivated by the Takens 
embedding theorem (Takens, 1980). Stated 
informally, suppose that the observed signal is 
generated by a dynamical system Ψ of ω real 
variables not all of which are observable. If the 
conditions of the theorem are met, then properties of 
the continuous extension map 1jj ZZ   will, up to 

a diffeomorphism, be true of Ψ. It should be stressed 
that the conditions of the theorem will never be 
satisfied with a finite data set, but experience with 
simple model systems does suggest that 1jj ZZ   

can sometimes be informative about the dynamical 
behavior of Ψ. A model based on an embedding is in 
a mathematical sense minimally restrictive. It only 
assumes that Ψ is a finite dimensional dynamical 
system on a compact behavior space. It is 
mechanistically agnostic and offers the possibility of 
examining the behavior of a large dimensional 
system with a limited number of observed variables. 
 
 Transition behavior in 1jj ZZ   was 

examined by constructing two dimensional 
recurrence plots (Eckmann, Kamphorst and Ruelle, 
1987). The construction starts by finding the nearest 
neighbors of each point in the embedding space. The 
number of nearest neighbors used is a parameter of 
the construction. For example, suppose that ten 
nearest neighbors are used and that the nearest 
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neighbors of 27Z  are 26Z , 28Z , 24Z , 30Z , 1Z , 

17Z , 204Z , 203Z , 19Z  and 423Z . The following 

points are plotted on the diagram: (27,26), (27,28), 
(27,24), (27,30), (27,1), (27,17), (27,204), (27, 203), 
(27,19) and (27,423). The recurrence diagram may be 
thought of as an   NN  directed adjacency matrix, 

where adjacency is determined by the nearest 
neighbor relationship and N  is the number of 

embedded points. The recurrence diagram is 
completed by finding the nearest neighbors for each 
embedded point and filling in this adjacency matrix. 
Eckmann, et al. found that visual examination of the 
recurrence plot could discover transitions in 
dynamical behavior that were not found by direct 
examination of the original time series. An example 
where the transition is readily apparent in the time 
series is shown in the first diagram. The signal is a 
single channel EEG recorded at 1 KHz in a rat. The 
transition at approximately t=1.1 seconds is a 
transition from a tonic to a clonic seizure. The 
corresponding recurrence plot is shown on the bottom 
side of the diagram. We wanted to find a way of 
quantifying the transition structure that was visually 
identifiable in the recurrence diagram 
 

 
 

Figure 1 (A) An EEG recorded at 1 KHz 
in a rat. (B) The corresponding 
recurrence diagram for embedding 
dimension m=5, Lag=1 and five nearest 
neighbors.  

 
 A quadrant scan is a continuous function of 
time derived from a recurrence diagram that 
quantifies the geometrical relationship between a 
dynamical system’s past and future. (To clarify, the 
quadrant scan is continuous in that it has the same 
sampling interval as the original time series.) 
Consider an arbitrary point iZ  and its corresponding 

time it .  A vertical line at it  and a horizontal line at 

it  divides the recurrence diagram into four 

quadrants. The points in Quadrant A are neighbors of 
points in iZ ’s past (they are to the left of the vertical 

line) that are in iZ ’s future (they are above the 

horizontal line). Neighbors of past points that are in 

iZ ’s future result when the trajectory of the 

dynamical system folds back on itself. They are, in 
this sense, irregular. In contrast, points in Quadrant B 
are neighbors of points in iZ ’s future that are also in 

iZ ’s future. We describe them as being regular. 

Similarly points in Quadrants C and D are regular 
and irregular respectively. To summarize: 
 
Quadrant A. Neighbors of points in iZ ’s past that 

are in iZ ’s future, Irregular Points 

 
Quadrant B. Neighbors of points in iZ ’s future that 

are also in iZ ’s future, Regular Points 

 
Quadrant C. Neighbors of points in iZ ’s past that are 

also in iZ ’s past, Regular Points 

 
Quadrant D. Neighbors of points in iZ ’s future that 

are in iZ ’s past, Irregular Points. 

 
A quadrant scan quantifies the relative density of 
regular and irregular points as a function of time. Let 

AN  be the number of occupied nodes in Quadrant 

A. Let NAN  be the total number of nodes in 

Quadrant A. Analogous variables are defined for 
Quadrants B, C and D. For any given point iZ  

corresponding to time it , quadrant scan )t(Q i  is 

defined by 
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The interpretation of a quadrant scan is best 
introduced by considering a time series that contains 
a single dramatic transition. The time series is shown 
in the top panel of Figure 2. It is a sine wave that 
makes a transition from a baseline of -2 to a baseline 
of +2 at t=500. The corresponding recurrence 
diagram is shown in the center panel, and the 
quadrant scan is shown in the bottom panel. The 
relative density of regular points decreases at a 
transition. Local maxima of quadrant scans identify 
transitions. 
 

 
 

Figure 2 (A) The time series: a sine wave 
making a transition. (B) The recurrence 
diagram for m=5, L =1 and one hundred 
nearest neighbors. (C) The quadrant scan 

 
 The sensitivity of the quadrant scan to 
embedding parameters is instructive. Figure 3 shows 
quadrant scans for the EEG signal for m=10 and L=1, 
2, 10, 20 and 30. These embeddings correspond to 
temporal windows of 9, 18, 90, 180 and 270 
milliseconds. Transitions not apparent in quadrant 

scans at larger time scales appear at smaller time 
scales. 
 

 
Figure 3. The original time series and 
the superimposed quadrant scans for 
one hundred nearest neighbors, m=10 
and L=1, 2, 10, 20 and 30.  

 
 An examination of Figure 3 leads to an open 
question. Can the dependence of local maxima of 
quadrant scans on the embedding window be used to 
quantify hierarchical transition behavior in the central 
nervous system? The idea of a hierarchy of time 
scales in the CNS has a long history and has recently 
received increased attention (Kiebel, et al., 2008; 
Perdikis, et al., 2011; Papo, 2013). A means of 
providing a systematic quantitative structure to this 
concept may be available by expressing CNS 
chronometry as a function of embedding window. 
We also note that the quadrant scan is a continuous 
function of time; that is, it has the same sampling 
interval as the original time series. Therefore change 
point detection technologies applied to time series, 
for example piecewise regression models (Hawkins, 
1976), hierarchical Bayesian analysis (Carter, et al., 
1994) and maximum likelihood methods (Guralnik 
and Srivastava, 1999), can be applied to quadrant 
scans. We can use the statistical tests of earlier 
methods to characterize the dynamical structures 
revealed by embedding. 
 
Acknowledgments 
 
We acknowledge support from the Uniformed 
Services University, the Marine Corps Systems 
Command and the Defense Medical Research and 
Development Program. We thank Professor Norman 
Kreisman, Tulane University for the EEG record. The 
opinions and assertions contained herein are the 

- 288 -



personal opinions of the authors and are not to be 
construed as official or reflecting the views of the 
United States Department of Defense.  
 
C. K. Carter and R. Kohn, “On Gibbs sampling for 
state space models,” Biometrika. 81, 541-553, 1994. 
 
V. Guralnik and J. Srivastava, “Event detection from 
time series data,” Proceedings Fifth ACM SIGKDD 
International Conference on Knowledge Discovery 
and Data Mining. San Diego, CA. pp. 33-42, 1999. 
 
D. M. Hawkins, “Point estimation of the parameters 
of piecewise regression models,” Applied Statistics. 
25(1), 51-57, 1976. 
 
S. J. Kiebel,S, J. Daunizeau and K. J. Friston, “A 
hierarchy of time scales in the brain,” PloS 
Computational Biology. 4(11), e1000209, 2008. 
 
D. Papo, “Time scales in cognitive neuroscience. 
Frontiers in Physiology,” 4, 86, 2013. 
 
D. Perdikis, R. Huys and V. Jirsa, “Complex 
processes from dynamical architectures with time-
scale hierarchy,” PLoS One. 6(2), e16589, 2011. 
 
F. Takens, “Detecting strange attractors in 
turbulence,” Lecture Notes in Mathematics. Volume 
898. D. A. Rand and L. S. Young, eds. pp. 365-381. 
Springer-Verlag, NY, 1980. 

- 289 -




