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Abstract—Intrinsic localized mode (ILM), which is
also called discrete breather (DB), is an energy localized
vibration in nonlinear coupled oscillators. It is well known
that the ILM can move in the system without decay of its
energy concentration. This paper shows that the position
of ILM can be controlled by proportional-derivative con-
trol. To create a force to the ILM, linear on-site coefficients
are modulated linearly with respect to the lattice number.
Namely, value of the linear on-site coefficients linearly in-
crease/decrease as the lattice number increases. Magnitude
of the tilt is adjusted with PD control scheme. As a result of
numerical simulations, a standing ILM is successfully con-
trolled toward a reference position with keeping its energy
concentration.

1. Introduction

Spatially localized and temporary periodic vibrations of-
ten appear in nonlinear coupled oscillators [1]. The energy
localized vibration in discrete media which is first discov-
ered by A. J. Sievers and S. Takeno [2] is called intrinsic lo-
calized mode(ILM) or discrete breather(DB). Experimental
observations of ILM have been reported for a variety of
physical system in this decade as well as theoretical and
numerical studies. In particular of them, the observation
in micro-mechanical cantilever array allow us to expect
the realization of applications using ILM in micro/nano-
engineering [3], because it was also observed that ILM can
move without decaying its energy concentration and can be
manipulated by an extraneous stimulus [4].

For the realization of such application, the control
scheme for the ILM should be established. In our previ-
ous research, it has been shown that a standing ILM loses
its stability by parametric excitation [5]. This result implies
that appropriately adjusting parameter can creates a force to
standing ILM, because the parametric resonance is usually
caused by changing a potential shape. Therefore, if the pa-
rameter of the system is changed appropriately based on the
distance from the reference position, the position of ILM
can be controlled by using an ordinary control method. In
this paper, proportional-derivative control is applied to the
control of the position of ILM. First, an approximate equa-

tion describing the motion of traveling ILM is derived. Sec-
ond, behavior of moving ILM is shown when on-site linear
coefficients are gradually changed with respect to the lat-
tice number. Finally, the proportional-derivative control of
ILM is demonstrated and discussed.

2. Coupled Cantilever Array and Standing ILM

Micro-cantilever array is one of nonlinear coupled oscil-
lators having ILM [3]. By focusing on the first mode of
beam vibrations, motions of each cantilever’s tip are ap-
proximately described by the following ordinary differen-
tial equation [4, 6, 7],

ün = − α1un − α2(2un − un+1 − un−1)

− β1u3
n − β2(un − un+1)3 − β2(un − un−1)3

(n = 1, · · · 8),

(1)

where un denotes the displacement of nth cantilever from
the equilibrium position. α1 and β1 can be set at 1 by nondi-
mensionalization. Coupling coefficients, α2 and β2, are de-
termined by the design of the array. In this paper, α2 is set at
0.1, β2 at 0.5 referring the experiment by M. Sato [3]. The
boundaries of Eq.(1) are set as u0 = u8, u9 = u1, namely the
periodic boundary condition.

Amplitude distribution of typical standing ILMs at β2 =

0.5 is shown with their Floquet multipliers in Fig.1. An
ILM which has odd-symmetry in its amplitude distribu-
tion is shown in the left panel of Fig.1(a). This is called
Sievers-Takeno mode(ST mode) [8]. On the other hand,
even-symmetrical one is called Page mode(P mode) shown
in the right panel of Fig.1(a). For the case that β2 = 0.5,
ST mode is stable whereas P mode is unstable as shown in
Fig.1(b).

3. Traveling ILM

The trajectories of traveling ILMs show the structure
which is quite similar to that of a pendulum [5]. In our
previous research, it was shown that the position of travel-
ing ILM can approximately be described by

Ẍ = − 1
2π
Ω2

0 sin(2πX), (2)
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Figure 1: Sievers-Takeno mode and Page mode. All coex-
isting ST modes are stable whereas P modes are unstable
for β2 = 0.5.

where X is the position of traveling ILM. Ω0 denotes the
angular frequency of small fluctuation of traveling ILM
around a stable ILM. The angular frequency depends on
the parameters of Eq.(1). It is shown in Ref [5] that if a
parameter is periodically changed in time, the parametric
resonance occurs for a stable ILM. This implies that an
effective potential for the position of ILM, which takes a
sinusoidal-like shape, is deformed homogeneously by the
parameter change. In the parametric excitation, equilibria
of Eq.(2) are not changed, namely, standing ILM is not af-
fected to its position by the parameter change. However, to
control the position of ILM, a force which affects the po-
sition of ILM is necessary. In this paper, parameter values
are varied with respect to the lattice number to create the
force to ILM, which is called parameter tilt.

4. Parameter Tilt

The linear on-site coefficients α1 is gradually changed
with respect to the lattice number to create the parameter
tilt which is defined as,

α1,n = α1,c + mα1 (n − c), (3)

where n denotes the lattice number, c is the center of the
parameter tilt. In this paper, c is fixed at 4. mα1 is the
gradient of the parameter tilt.

If there is no parameter tilt, namely mα1 = 0, stand-
ing ILMs locate at n = · · · , 4, 4.5, 5, · · · . However, as
shown in Fig.2, the position of standing ILMs is changed
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Figure 2: Position of standing ILMs vs. the parameter tilt.

with respect to the gradient of the parameter tilt mα1 . Sta-
ble ST modes and unstable P modes become close to each
other as mα1 decreases or increases. If |mα1 | exceeds a cer-
tain value, ST and P modes disappear except ILMs located
around n = 1 and n = 8 at which α1,n has a large gap. The
change of position of standing ILMs around the center of
array corresponds to the case that a constant force term is
added to Eq.(2), namely,

Ẍ = − 1
2π
Ω2

0 sin(2πX) − F, (4)

where F is the term representing the force to the ILM po-
sition caused with the parameter tilt. If F is adjusted based
on the difference between the position of the traveling ILM
and a reference position, the traveling ILM should be con-
trolled. In the next section, several demonstrations of feed-
back control for traveling ILM will be shown.

5. Proportional-derivative Control

To control the position of ILM, the proportional-
derivative(PD) control is applied in this paper. The param-
eter tilt is adjusted as,

α1,n(t) = α1,c + mα1 {Kp(Nr − XILM) + KvẊILM}(n − c) (5)

where Nr is the reference position, XILM and ẊILM are the
position and the velocity of ILM, respectively. Kp and Kv
denote the proportional gain and the derivative gain, re-
spectively. In the initial state, an ILM stands at n = 4 and
is stable as shown in Fig.1. The PD control is applied be-
tween 100 < t < 1000 for all the simulations.

To detect the position of ILM, a complex projection G :
R2N → C [9] is used, which is defined as

h = G(u, u̇) =
N∑

n=1

{ (
1
2

u̇2
n + UOn(un)

)
ei 2π

N n

+ UIn(un − un−1)ei 2π
N (n+ 1

2 )
} (6)
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where,

UOn(un) =
α1

2
u2

n +
β1

4
u4

n (7)

UIn(un − un−1) =
α2

2
(un − un−1)2 +

β2

4
(un − un−1)4. (8)

Here, N denotes the number of oscillators and is set at 8 in
this paper. The position of ILM can be estimated by

XILM =
arg h
2π

N +
1
2

(9)

for the periodic boundary condition.
Figure3 shows the case that the reference value is set

at Nr = 4.3. The position of the ILM begins to sinu-
soidally oscillate when the control is turned on. In the case
of (Kp,Kv) = (0.1, 0), the oscillation does not decay. On
the other hand, the oscillation decays and the position con-
verges to XILM ≃ 4.15 if Kv increases to 0.1. This means
that the feedback of the velocity of ILM causes a damping
effect into the motion of controlled ILM.

By increasing the proportional gain, the difference be-
tween the position after the controlled ILM converged and
the reference position becomes small. In fact, the con-
trolled ILM converges to XILM ≃ 4.25 in the case that the
proportional gain increases to Kp = 0.5. However, the posi-
tion after the controlled ILM converged does not coincide
with the reference position even though the proportional
gain increases further. On the basis of the control theory,
an integral compensation will be needed to make the error
zero.

By increasing the derivative gain, the speed to converge
is enhanced as shown by the yellow curve in Fig.3. How-
ever, the error slowly increases after the ILM converged
at t ≃ 300. For the corresponding control input shown in
the lower panel of Fig.3, a small fluctuation is observed.
As the time develops, the amplitude of the high frequency
fluctuation becomes large. The fluctuation is caused by
the vibration of each oscillator of Eq.(1) because ILM is
a periodic solution of the system. The position detected by
the complex projection fluctuates during each oscillator vi-
brates because the potential energy include nonlinear terms
whereas the kinetic energy does not. As long as the com-
plex projection Eq.(6) is used, detecting the fluctuation is
unavoidable.

The cases that the reference position is set at Nr = 4.5
or Nr = 5 are shown in Fig.4. For Nr = 4.5, the controlled
ILM converges to XILM = 4.5 and no error remains. Af-
ter the control is turned off, the ILM loses its stability and
begins to move because P mode is unstable for β2 = 0.5.
For Nr = 5, the controlled ILM converges to XILM = 5. If
the control is turned off after the ILM is sufficiently close
to XILM = 5, the ILM keeps its position, because ST mode
is originally stable. The control inputs tend to be zero as
the time develops as shown in the lower panel of Fig.4.
This implies that the error becomes zero without an inte-
gral compensation.
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Figure 3: Trajectories of controlled ILMs and control input
for Nr = 4.3. Red: (Kp,Kv) = (0.1, 0), green: (Kp,Kv) =
(0.1, 0.1), blue: (Kp,Kv) = (0.5, 0.1), yellow: (Kp,Kv) =
(0.5, 0.5).

The time development of the energy distribution is
shown in Fig.5. In the initial state, the energy is concen-
trated around n = 4. The energy concentration is kept
during the control is applied and also after the control is
turned off. The center of the energy concentration is finally
located at n = 5. As a result, the ILM controlled from
n = 4 to n = 5 without loss of the energy concentration.
The feedback control is succeeded.

6. Conclusion

In this paper, a feedback control for the position of ILM
was attempted. First, it was shown that the force to the
position of ILM can be created by the parameter tilt of the
system. Then, the magnitude of the parameter tilt was mod-
ulated by the difference between the position of ILM and
the reference position by the proportional-derivative con-
trol scheme. Finally, it was demonstrated that ILM can be
converged to anywhere near the original position.

However, if the reference position is not coincide with
the place where ILM originally exists, the small and fast
fluctuation was observed in the control input. To elimi-
nate the fluctuation, the method to detect the position of
ILM should be improved. In addition, the residual error
was also observed in this case. The control scheme should
be considered to include an integral compensation, namely,
the proportional-integral-derivative(PID) control.

The area in which parameter values are adjusted should
be reduced if the control scheme is applied to a real system
because it is almost impossible to create the parameter tilt
in the whole array if it consists of many oscillators. Since
ILM usually concentrates in a few sites, the area, fortu-
nately, seems to be able to narrow. In fact, the manipulation
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Figure 4: Trajectories of controlled ILMs and control input
for Nr = 4.5(red and green) and 5(blue and yellow). Gains
are set at (Kp,Kv) = (0.1, 0.1) for the red and blue curves,
(Kp,Kv) = (0.1, 0.5) for the green and yellow curves.
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Figure 5: Time development of the energy distribution of
the controlled ILM shown by the blue curve in Fig.4.

using a local defect created by an IR laser is already demon-
strated for ILM in a micro-cantilever array by M.Sato and
his coworkers [10]. If the position of the local defect is
adjusted based on the difference between the position of
ILM and the reference position, the feedback control will
be able to achieve experimentally in micro-cantilever ar-
ray. We will take into account such realistic restrictions for
realization of the control of ILM in the future works.
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