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Abstract—Two integrable nonlinear differential-
difference systems, semi-discrete analogues of the
Wadati-Konno-Ichikawa elastic beam equation and the
short pulse equation, are constructed by using a geometric
approach.

1. Introduction

In 1975, Ablowitz and Ladik proposed a method of ob-
taining certain classes of integrable nonlinear differential-
difference equations which are semi-discrete analogues of
integrable nonlinear partial differential equations such as
the nonlinear Schrédinger (NLS) equation

iy = Y £ 2P0 M
and the modified KdV (mKdV) equation

qgr = qxxx * 6qZCIx > ()

based on the Ablowitz-Kaup-Newell-Segur (AKNS) spec-
tral problem [1,2]. As a discrete analogue of the NLS equa-
tion, Ablowitz and Ladik obtained

. dl//ﬂ

dt

which is often called the Ablowitz-Ladik equation. They
also obtained a discrete analogue of the mKdV equation

1
= ﬁ(l//nﬂ - 2% + 'pn—l) + |Wn|2(lybn+l + 1,0,1_1) B (3)

dg,
jt = (1 K0 (Gus1 = Gn1).- )

These nonlinear differential-difference equations have ex-
act N-soliton solutions.

It is known that there is a class of integrable nonlinear
partial differential equations which admit singularities such
as loop, cusp, and peak soliton solutions. Among them, the
Wadati-Konno-Ichikawa (WKI) elastic beam equation

M.X
lh=—(————7) , &)
(A +u?)?/,,
and the short pulse equation

Vg =4v+ % (VS)Mr R (6)

appear in various physical phenomena [3-7]. For exam-
ple, the short pulse equation (6) describes ultra short opti-
cal pulses which cannot be described by the NLS equation
(1), thus we can consider the short pulse equation as an ex-
tension of the NLS equation [7]. It should be noted that
the WKI elastic beam equation and the short pulse equa-
tion are transformed to the potential mKdV equation and
the sine-Gordon equation, respectively, through hodograph
(reciprocal) transformations [8—10].

In this contribution, we construct semi-discrete ana-
logues of the WKI elastic beam equation and the short
pulse equation by using a geometric approach. There
have been intensive studies in topics related to curve ge-
ometry after the pioneering work of Lamb and Goldstein-
Petrich [11, 12], and then several frameworks for the mo-
tion of discrete curves have been proposed in various set-
tings [13, 14]. It is well known that the potential mKdV
equation describes the motion of plane curves [12]. In this
point of view, the hodograph (reciprocal) transformation of
the WKI elastic beam equation and the short pulse equation
can be viewed as the Euler-Lagrange transformation of the
motion of plane curves. From this fact, we can discretize
the WKI elastic beam equation and the short pulse equation
by considering a discrete analogue of the hodograph (recip-
rocal) transformation for the motion of discrete curves.

2. Motion of smooth curves, the WKI elastic beam
equation and the short pulse equation

Let y(s) be an arc-length parametrized curve in Eu-
clidean plane R2. Then the tangent vector % (= T) satisfies

Oy

o] = 1 )

Thus % admits the parametrization

_ Oy | cosé
T‘&‘[sme]' ®)

The function 8 = 6(s) is called the angle function of y
which denotes the angle of g—z measured from the x-axis.
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We define the normal vector N by
[0 -1 18y | —sin@
N_[l 0 ]a_[ cos 6 ]’ ®)
and introduce the Frenet frame
F =(T,N), (10)

which is the orthonormal basis attached to the curve. The
Frenet equation is given by

—K

O 9’

0 0

—F=F
Os [ K

where the function x = g—f is the curvature of y. The angle

function 6 is also referred to as the potential function. Let

us consider the following isoperimetric motion in time #:

an

0 0 Kes + 5
—F=F ;2 12
ot [ —Kgs — % 0 12
In terms of ‘;—Z, (11) and (12) can be expressed as
a [dy 0 -« |0y
o) < [0 o -
o (dy 0 Kss + % oy
— = — 14
Bt(ﬁs) [ k=5 0 ]os (14

respectively. Then the compatibility condition of (11) and
(12), or (13) and (14) yields the mKdV equation for « =
k(s, 1) [11,12]

3
K+ §K2K5 + Kyys = 0, (15)
or the potential mKdV equation for 6 = (s, 1):
1
6, + 5(93.)3 + 055 = 0. (16)

The mKdV equation can be viewed as the governing equa-
tion of the Lagrangian description for the motion of the
curves vy in terms of the arc-length parameter s. Let us con-
sider the Eulerian description of the same motion of the
curves. We introduce the Eulerian coordinates
ool ]
Vo
a7

x(s,1) cos (s, 1)
v(s, 1) sin6(s’, 1)
and change the independent variables (s, 7) to
A
(x,) = (f cosO(s’, 1) ds’ + xg, t).
0

For simplicity we write ¢ as t without causing confusion.
Let us write down the equation for v in terms of x and ¢. It
can be easily shown that

y(s, 1) =

(18)

s(x,t)zf 1+2 dx, K(x,l‘)Z(lL (19)

+v§)%’
1 -V, ] 1 1 ]
N=— T=— (20)
V1+v2 1 VI+v2 ] Ve

By using
1
—y = —k,N — KT, 21
Fr 7K 20
and relations T- N =0, N - N = 1, it follows that
k=7 N = —2 (22)

N
by taking the inner product with N on both sides of (21).
By using % = /1 + 12, we see that

Ve = —Ks A/l +V2 = —k,. (23)
Thus we derive
VXX
v, = —|——1 . (24)
t [(1 )i )

Introducing u = v,, we obtain the WKI elastic beam equa-
tion (5) [3-6] Therefore, (24) or (5) can be viewed as the
governing equation of the Eulerian description for the curve
motions given by (11) and (12).

The above discussion shows that the hodograph (recip-
rocal) transformation arises naturally as the transformation
between the Lagrangian and Eulerian descriptions from the
point of view of geometry of plane curves.

It is well known that the sine-Gordon equation

6, = 4sin6, (25)

belongs to the mKdV hierarchy [15, 16] and it describes a
certain motion of plane curves [17]. It is possible to de-
rive the governing equation of curve motion in the Eulerian
description in a similar manner to the case of the mKdV
equation. Applying the transformations

(x,') = (f cosO(s’, 1) ds" + xy, t),
0

S
v:f sin@(s’, 1) ds’ + vo,
0

we obtain the short pulse equation (6) where we set t' = ¢
for simplicity [7]. Again, we note that the short pulse
equation (6) describes the same curve motions as the sine-
Gordon equation by using the Eulerian description. The
transformation (26) gives the hodograph (reciprocal) trans-
formation between them [9, 18, 19].

(26)

27)

3. Continuous motion of discrete curves and semi-
discrete analogues of the WKI elastic beam equation
and the short pulse equation

3.1. Continuous motion of a discrete curve and a semi-
discrete WKI elastic beam equation

Amapy : Z — R? n + v, is said to be a discrete
curve of segment length a,, if
Ynel Z¥n| _ ¢ (28)
an
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We introduce the angle function ¢, of a discrete curve y by

Y+l — Vn _ | cos lpn
a, - [ siny, ] ’ (29)
A discrete curve vy satisfies
Yn+l —VYn — R(Kn) Yn — Vn-1 , (30)

n ap-1

for k, = Y, — ¥,—1, where R(k,) denotes the rotation matrix
given by

COS Ky,
sin

mm:( 31)

—sink,
Ccosk, |°

We set a, = € (> 0), and consider the following motion of
discrete curves:

n 1 n n — Yn
dyn _ R(_K_) Vel = Yn 32)

dr cos 2 €

Then from the isoperimetric condition (28) and the com-
patibility condition of (30) and (32) , it follows that there
exists a potential function 6, characterized by

9n+1 + Hn 0n+1 - Qn—l

—’ Kn -~ b
2 2

and that 6, satisfies the semi-discrete potential mKdV equa-

tion [1, 13,20]

Yn = (33)

dgn 2 6n+1 - gn—l )
= —tan[——. 34
dr e an( 4 34)
We note that K, = %tan% satisfies the semi-discrete
mKdV equation
dk, 2 e
= 21+ =K (Kps1 — K1) 35
7 E( 1 ,,)( +1 1) (35)

It is possible to consider the Eulerian description of the
curve motion defined by (30) and (32). Noting (29) and
(33), we introduce the Eulerian coordinates

X | | ecos(L5) X,
n®=[” ]= +[ }w%>
Va(®) =0| esin (—9“ ';9/ ) Vo

Thus the angle function ¢, = w satisfies

X 1—X . Vsl — V,
CcoS d/n = Zntl  an s Sll’ll//,, = ol Tn s
€ €
Vypel —V
tany, = ——21 (37)
Xn+l_Xn

which can be regarded as the hodograph (reciprocal) trans-
formation for (34).
Then from (29), (34) and (36), we derive

Vit

d -V
d_(Xn-H -X,) =~ (Gpe1 +G), (38)
t €

d On
— (Vps1 = V) = : (Gps1 +Gr),s (39)

dt

where
Vnsl — 2Vn + Vp-1

G, = . 40
Xn+1 - 2Xn + Xn—l ( )
Note that v, and X, satisfy
n — Vn 2 Xn _Xn 2
(V“ V)+( + ):1. (41)
€ €

From (38) and (39), we obtain
i Vn+l = Vn
dt Xn+1 - Xn

1 Vn+l = Vn :
= —[14+(Z ) |(Gper +Gy) . (42
E( (Xn+l_Xn) ( +1 ) ( )

The system of (38), (39) and (40) is nothing but the semi-
discrete WKI elastic beam equation. Note that a different
form was obtained in [22], but the above form is simpler
than it.

Thus (42) can be rewritten as

d _ 1 er—l - lﬁn lﬁn - lﬂn—l )
dtw" =< (tan > + tan 2 .

(43)

Equation (43) with the discrete hodograph (reciprocal)
transformation

n-1 n—1
X,(t) = ) €cosyri(t) + Xo,  va(t) = D esinyn() +vo,
j=0 j=0

(44)
can be also regarded as the semi-discrete WKI elastic beam
equation. In the continuous limit € — 0 with s = en + ¢ and
= —%zt, (43) and (44) converge to

Oy + %(95)3 +04, =0, (45)
and
x(s, 1) = f: cosO(s’,1")ds" + xo,
(s, 1) = fo " Sin6(s'.1)ds’ + vo. (46)

which give the (potential) WKI elastic beam equation (24).

3.2. A semi-discrete short pulse equation

We consider the semi-discrete sine-Gordon equation

d
E(arwl —0,) = 4e sin 47

(011+1 + gn—l )
— )
Similar to the continuous case, the semi-discrete sine-
Gordon equation (47) can be regarded as describing a cer-
tain motion of discrete plane curves. Therefore, we may
expect that the application of the same transformation as
the case of the semi-discrete WKI equation to the semi-
discrete sine-Gordon equation (47) yields the semi-discrete
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analogue of the short pulse equation. By using the transfor-
mation

X,
yalt) = [ ot ]

"Z—ll ECOS(M)

9/+]+9/-)
2

¥ [ Xo } . (48)
=0 | esin ( Vo
we obtain the semi-discrete short pulse equation

d
— Xt = X) = —2(v2,, = v,

n+l —

(49)

d
—(Vns1 = V) = 2(Xpe1 — X)(Vps1 + V). (50)

dt
We note that the following relation also holds from (48)

(Vn+l —Vn )2 (Xn+l _Xn )2 _
+ =1
€ €

(51
From (49) and (50), we obtain

Vn+l = Vn

Xn+1 - Xn

d Vntl — Vn
dt Xn+1 - Xn

2

) (Vi1 + V)
(52)

In order to take the continuous limit, we assume the bound-

ary condition X, = v, = 0 for n < 0, which is con-

sistent with (48). Then the continuous limit € — 0 (i.e.,

Xn+l - Xn i O) giVCS

) = 2(Vps1 +Vn)+2(

Vasl = Vn O VTV,
~  ~,5 _) - b - ~ % v,
X,H.] _Xn Ox 2
n—1

0X, 0Xo X1 — X))

= — 4+ —_—
ot ot /Z; ot

aX() =) 2 2 2 ax 2

= 7 —ZJZ:(;(V]'H - Vj) = —2vn d E ==-2v",
0 d 0oxo0 0 22 0 0 , 0

ot or Torox or ax o ox
Thus (52) converges to
0y — 220 )v, = v + 40?2, (53)

which is nothing but the short pulse equation (6). The same
result was obtained by using the bilinear method [23].
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