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Abstract—Two integrable nonlinear differential-
difference systems, semi-discrete analogues of the
Wadati-Konno-Ichikawa elastic beam equation and the
short pulse equation, are constructed by using a geometric
approach.

1. Introduction

In 1975, Ablowitz and Ladik proposed a method of ob-
taining certain classes of integrable nonlinear differential-
difference equations which are semi-discrete analogues of
integrable nonlinear partial differential equations such as
the nonlinear Schrödinger (NLS) equation

iψt = ψxx ± 2|ψ|2ψ , (1)

and the modified KdV (mKdV) equation

qt = qxxx ± 6q2qx , (2)

based on the Ablowitz-Kaup-Newell-Segur (AKNS) spec-
tral problem [1,2]. As a discrete analogue of the NLS equa-
tion, Ablowitz and Ladik obtained

i
dψn

dt
=

1
h2 (ψn+1 − 2ψn + ψn−1) ± |ψn|2(ψn+1 + ψn−1) , (3)

which is often called the Ablowitz-Ladik equation. They
also obtained a discrete analogue of the mKdV equation

dqn

dt
= (1 ± h2q2

n)(qn+1 − qn−1) . (4)

These nonlinear differential-difference equations have ex-
act N-soliton solutions.

It is known that there is a class of integrable nonlinear
partial differential equations which admit singularities such
as loop, cusp, and peak soliton solutions. Among them, the
Wadati-Konno-Ichikawa (WKI) elastic beam equation

ut = −
(

ux

(1 + u2)
3
2

)
xx

, (5)

and the short pulse equation

vxt = 4v +
2
3

(
v3

)
xx
, (6)

appear in various physical phenomena [3–7]. For exam-
ple, the short pulse equation (6) describes ultra short opti-
cal pulses which cannot be described by the NLS equation
(1), thus we can consider the short pulse equation as an ex-
tension of the NLS equation [7]. It should be noted that
the WKI elastic beam equation and the short pulse equa-
tion are transformed to the potential mKdV equation and
the sine-Gordon equation, respectively, through hodograph
(reciprocal) transformations [8–10].

In this contribution, we construct semi-discrete ana-
logues of the WKI elastic beam equation and the short
pulse equation by using a geometric approach. There
have been intensive studies in topics related to curve ge-
ometry after the pioneering work of Lamb and Goldstein-
Petrich [11, 12], and then several frameworks for the mo-
tion of discrete curves have been proposed in various set-
tings [13, 14]. It is well known that the potential mKdV
equation describes the motion of plane curves [12]. In this
point of view, the hodograph (reciprocal) transformation of
the WKI elastic beam equation and the short pulse equation
can be viewed as the Euler-Lagrange transformation of the
motion of plane curves. From this fact, we can discretize
the WKI elastic beam equation and the short pulse equation
by considering a discrete analogue of the hodograph (recip-
rocal) transformation for the motion of discrete curves.

2. Motion of smooth curves, the WKI elastic beam
equation and the short pulse equation

Let γ(s) be an arc-length parametrized curve in Eu-
clidean plane R2. Then the tangent vector ∂γ

∂s (= T) satisfies∣∣∣∣∣∂γ∂s

∣∣∣∣∣ = 1. (7)

Thus ∂γ
∂s admits the parametrization

T =
∂γ

∂s
=

[
cos θ
sin θ

]
. (8)

The function θ = θ(s) is called the angle function of γ
which denotes the angle of ∂γ

∂s measured from the x-axis.
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We define the normal vector N by

N =
[

0 −1
1 0

]
∂γ

∂s
=

[
− sin θ
cos θ

]
, (9)

and introduce the Frenet frame

F = (T, N), (10)

which is the orthonormal basis attached to the curve. The
Frenet equation is given by

∂

∂s
F = F

[
0 −κ
κ 0

]
, (11)

where the function κ = ∂θ
∂s is the curvature of γ. The angle

function θ is also referred to as the potential function. Let
us consider the following isoperimetric motion in time t:

∂

∂t
F = F

[
0 κss +

κ3

2
−κss − κ3

2 0

]
. (12)

In terms of ∂γ
∂s , (11) and (12) can be expressed as

∂

∂s

(
∂γ

∂s

)
=

[
0 −κ
κ 0

]
∂γ

∂s
, (13)

∂

∂t

(
∂γ

∂s

)
=

[
0 κss +

κ3

2
−κss − κ3

2 0

]
∂γ

∂s
, (14)

respectively. Then the compatibility condition of (11) and
(12), or (13) and (14) yields the mKdV equation for κ =
κ(s, t) [11, 12]

κt +
3
2
κ2κs + κsss = 0, (15)

or the potential mKdV equation for θ = θ(s, t):

θt +
1
2

(θs)3 + θsss = 0. (16)

The mKdV equation can be viewed as the governing equa-
tion of the Lagrangian description for the motion of the
curves γ in terms of the arc-length parameter s. Let us con-
sider the Eulerian description of the same motion of the
curves. We introduce the Eulerian coordinates

γ(s, t) =
[

x(s, t)
v(s, t)

]
=

∫ s

0

[
cos θ(s′, t)
sin θ(s′, t)

]
ds′ +

[
x0
v0

]
,

(17)
and change the independent variables (s, t) to

(x, t′) =
(∫ s

0
cos θ(s′, t) ds′ + x0, t

)
. (18)

For simplicity we write t′ as t without causing confusion.
Let us write down the equation for v in terms of x and t. It
can be easily shown that

s(x, t) =
∫ √

1 + v2
x dx, κ(x, t) =

vxx

(1 + v2
x)

3
2

, (19)

N =
1√

1 + v2
x

[
−vx

1

]
, T =

1√
1 + v2

x

[
1
vx

]
.(20)

By using
∂

∂t
γ = −κsN − 1

2
κ2T, (21)

and relations T · N = 0, N · N = 1, it follows that

−κs = γt · N =
vt√

1 + v2
x

, (22)

by taking the inner product with N on both sides of (21).
By using ds

dx =
√

1 + v2
x, we see that

vt = −κs

√
1 + v2

x = −κx. (23)

Thus we derive

vt = −
 vxx

(1 + v2
x)

3
2


x

. (24)

Introducing u = vx, we obtain the WKI elastic beam equa-
tion (5) [3–6] Therefore, (24) or (5) can be viewed as the
governing equation of the Eulerian description for the curve
motions given by (11) and (12).

The above discussion shows that the hodograph (recip-
rocal) transformation arises naturally as the transformation
between the Lagrangian and Eulerian descriptions from the
point of view of geometry of plane curves.

It is well known that the sine-Gordon equation

θts = 4 sin θ, (25)

belongs to the mKdV hierarchy [15, 16] and it describes a
certain motion of plane curves [17]. It is possible to de-
rive the governing equation of curve motion in the Eulerian
description in a similar manner to the case of the mKdV
equation. Applying the transformations

(x, t′) =
(∫ s

0
cos θ(s′, t) ds′ + x0, t

)
, (26)

v =
∫ s

0
sin θ(s′, t) ds′ + v0, (27)

we obtain the short pulse equation (6) where we set t′ = t
for simplicity [7]. Again, we note that the short pulse
equation (6) describes the same curve motions as the sine-
Gordon equation by using the Eulerian description. The
transformation (26) gives the hodograph (reciprocal) trans-
formation between them [9, 18, 19].

3. Continuous motion of discrete curves and semi-
discrete analogues of the WKI elastic beam equation
and the short pulse equation

3.1. Continuous motion of a discrete curve and a semi-
discrete WKI elastic beam equation

A map γ : Z → R2; n 7→ γn is said to be a discrete
curve of segment length an if∣∣∣∣∣γn+1 − γn

an

∣∣∣∣∣ = 1. (28)
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We introduce the angle function ψn of a discrete curve γ by

γn+1 − γn

an
=

[
cosψn

sinψn

]
. (29)

A discrete curve γ satisfies

γn+1 − γn

an
= R(κn)

γn − γn−1

an−1
, (30)

for κn = ψn −ψn−1, where R(κn) denotes the rotation matrix
given by

R(κn) =
(

cos κn − sin κn

sin κn cos κn

)
. (31)

We set an = ε (> 0), and consider the following motion of
discrete curves:

dγn

dt
=

1
cos κn

2
R

(
−κn

2

)
γn+1 − γn

ε
. (32)

Then from the isoperimetric condition (28) and the com-
patibility condition of (30) and (32) , it follows that there
exists a potential function θn characterized by

ψn =
θn+1 + θn

2
, κn =

θn+1 − θn−1

2
, (33)

and that θn satisfies the semi-discrete potential mKdV equa-
tion [1, 13, 20]

dθn

dt
=

2
ε

tan
(
θn+1 − θn−1

4

)
. (34)

We note that Kn =
2
ε

tan κn
2 satisfies the semi-discrete

mKdV equation

dKn

dt
=

2
ε

(
1 +

ε2

4
K2

n

)
(Kn+1 − Kn−1). (35)

It is possible to consider the Eulerian description of the
curve motion defined by (30) and (32). Noting (29) and
(33), we introduce the Eulerian coordinates

γn(t) =
[

Xn(t)
vn(t)

]
=

n−1∑
j=0

 ε cos
(
θ j+1+θ j

2

)
ε sin

(
θ j+1+θ j

2

)
 +

[
X0
v0

]
. (36)

Thus the angle function ψn =
θn+1+θn

2 satisfies

cosψn =
Xn+1 − Xn

ε
, sinψn =

vn+1 − vn

ε
,

tanψn =
vn+1 − vn

Xn+1 − Xn
, (37)

which can be regarded as the hodograph (reciprocal) trans-
formation for (34).

Then from (29), (34) and (36), we derive

d
dt

(Xn+1 − Xn) = −vn+1 − vn

ε
(Gn+1 +Gn) , (38)

d
dt

(vn+1 − vn) =
δn

ε
(Gn+1 +Gn) , (39)

where
Gn =

vn+1 − 2vn + vn−1

Xn+1 − 2Xn + Xn−1
. (40)

Note that vn and Xn satisfy(vn+1 − vn

ε

)2
+

(Xn+1 − Xn

ε

)2

= 1. (41)

From (38) and (39), we obtain

d
dt

(
vn+1 − vn

Xn+1 − Xn

)
=

1
ε

1 + (
vn+1 − vn

Xn+1 − Xn

)2 (Gn+1 +Gn) . (42)

The system of (38), (39) and (40) is nothing but the semi-
discrete WKI elastic beam equation. Note that a different
form was obtained in [22], but the above form is simpler
than it.

Thus (42) can be rewritten as

d
dt
ψn =

1
ε

(
tan

ψn+1 − ψn

2
+ tan

ψn − ψn−1

2

)
. (43)

Equation (43) with the discrete hodograph (reciprocal)
transformation

Xn(t) =
n−1∑
j=0

ε cosψ j(t) + X0 , vn(t) =
n−1∑
j=0

ε sinψn(t) + v0 ,

(44)
can be also regarded as the semi-discrete WKI elastic beam
equation. In the continuous limit ε → 0 with s = εn+ t and
t′ = − ε2

6 t, (43) and (44) converge to

θt′ +
1
2

(θs)3 + θsss = 0 , (45)

and

x(s, t′) =
∫ s

0
cos θ(s′, t′)ds′ + x0 ,

v(s, t′) =
∫ s

0
sin θ(s′, t′)ds′ + v0 , (46)

which give the (potential) WKI elastic beam equation (24).

3.2. A semi-discrete short pulse equation

We consider the semi-discrete sine-Gordon equation

d
dt

(θn+1 − θn) = 4ε sin
(
θn+1 + θn−1

2

)
. (47)

Similar to the continuous case, the semi-discrete sine-
Gordon equation (47) can be regarded as describing a cer-
tain motion of discrete plane curves. Therefore, we may
expect that the application of the same transformation as
the case of the semi-discrete WKI equation to the semi-
discrete sine-Gordon equation (47) yields the semi-discrete
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analogue of the short pulse equation. By using the transfor-
mation

γn(t) =
[

Xn(t)
vn(t)

]
=

n−1∑
j=0

 ε cos
(
θ j+1+θ j

2

)
ε sin

(
θ j+1+θ j

2

)
 +

[
X0
v0

]
, (48)

we obtain the semi-discrete short pulse equation

d
dt

(Xn+1 − Xn) = −2(v2
n+1 − v2

n), (49)

d
dt

(vn+1 − vn) = 2(Xn+1 − Xn)(vn+1 + vn). (50)

We note that the following relation also holds from (48)(vn+1 − vn

ε

)2
+

(Xn+1 − Xn

ε

)2

= 1. (51)

From (49) and (50), we obtain

d
dt

(
vn+1 − vn

Xn+1 − Xn

)
= 2(vn+1+vn)+2

(
vn+1 − vn

Xn+1 − Xn

)2

(vn+1+vn) .

(52)
In order to take the continuous limit, we assume the bound-
ary condition Xn = vn = 0 for n < 0, which is con-
sistent with (48). Then the continuous limit ε → 0 (i.e.,
Xn+1 − Xn → 0) gives

vn+1 − vn

Xn+1 − Xn
→ ∂v

∂x
,

vn+1 + vn

2
→ v ,

∂Xn

∂t
=
∂X0

∂t
+

n−1∑
j=0

∂(X j+1 − X j)
∂t

=
∂X0

∂t
− 2

n−1∑
j=0

(v2
j+1 − v2

j ) = −2v2
n →

∂x
∂t
= −2v2 ,

∂

∂t
=

∂

∂t′
+
∂x
∂t

∂

∂x
=

∂

∂t′
− 2v2

n
∂

∂x
→ ∂

∂t′
− 2v2 ∂

∂x
.

Thus (52) converges to

(∂t′ − 2v2∂x)vx = 4v + 4vv2
x , (53)

which is nothing but the short pulse equation (6). The same
result was obtained by using the bilinear method [23].
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