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Abstract– Nonlinear dynamical systems with time-

delayed feedback show very rich dynamics due to the 

high-dimensionality of the systems induced by time-

delayed feedback. Dynamical systems generate chaotic 

and regular motions, which induce local instability. These 

local motions can be quantified with finite-time Lyapunov 

exponents (FTLEs). However, methods for the calculation 

of FTLEs in time-delayed dynamical systems have not 

been well established yet because of the difficulty of 

calculating Lyapunov exponents in time-delayed high-

dimensional systems. We present a method for calculating 

FTLEs in time-delayed dynamical systems, and apply it to 

the Mackey-Glass model and the Lang-Kobayashi 

equations for a semiconductor laser with optical feedback. 

We investigate the distributions of FTLEs for different 

parameter values. It is found that both the variance of the 

distribution of FTLEs and the maximum Lyapunov 

exponent decrease with increase of the delay time in 

chaotic regions. 

 

1. Introduction 

 

Nonlinear dynamical systems with time-delayed 

feedback show bifurcation phenomena and chaotic 

behaviors which have high dimensionality due to the time-

delayed feedback [1,2]. The time-delayed dynamical 

systems can be used for the applications of fast physical 

random number generators [3,4], reservoir computing 

[5,6], and optical secure communication.  

The dimensionality of dynamical systems can be 

quantified from Lyapunov exponents. Lyapunov exponents 

characterize an average growth of small perturbations to an 

orbit of an attractor in the phase space and a positive 

maximum Lyapunov exponent denotes that the system is 

governed by deterministic chaos. Although the Lyapunov 

exponents are asymptotic quantities of an attractor, it may 

be necessary to investigate a growth rate of perturbations 

over finite time. The characteristics of finite-time 

behaviors are important for prediction of chaotic time 

series [7] and for unpredictability of chaos-based random 

number generators [8]. The finite-time behaviors are also 

useful to distinguish intermittent dynamical states from 

continuous chaotic motions [9]. 

To quantify a growth rate for finite-time behaviors, 

finite-time Lyapunov exponents (FTLEs) [9] and local 

Lyapunov exponents (LLEs) [10,11] have been proposed. 

The distributions of FTLEs in fully developed chaos and 

intermittency have been classified [9]. Local stability of an 

attractor in a system driven by an external signal has been 

investigated from conditional LLEs [11]. The FTLEs and 

LLEs have been used for the investigation of local stability 

in an attractor. However, methods for calculating FTLEs in 

time-delayed dynamical systems have not been well 

established yet. It is important to develop a method for 

calculating FTLEs in time-delayed dynamical systems. 

In this study, we propose a method for calculating 

FTLEs in time-delayed dynamical systems, and apply the 

method to the Mackey-Glass model and the Lang-

Kobayashi equations for a semiconductor laser with 

optical feedback. We investigate the dependence of the 

distributions of the FTLEs on system parameter values. 

 

2. Numerical models 

 

We used the Mackey-Glass equation in our numerical 

simulations. The Mackey-Glass equation is a model with 

time-delayed feedback and it is represented by the 

following equation, 
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where x(t  ) denotes the time-delayed feedback and  is 

the delay time. The delay time is set to . The 

parameters a, b, and c are a = 2, b = 10, and c = 1, 

respectively.  

We also used the Lang-Kobayashi equations in our 

simulations. The dynamics of a single mode 

semiconductor laser subject to coherent optical feedback 

with time delay can be represented by the Lang-Kobayashi 

equations [12]. The Lang-Kobayashi equations consist of 

differential equations for slowly varying amplitude of the 

electric field E (a complex variable) and the carrier density 

N (a real variable): 
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where E(t – ) denotes the time-delayed optical feedback 

and  is the delay time, which is defined as L /c = 4.0 

ns by the external cavity length 𝐿 and the speed of light c. 

 = (1 – r
2 

2 ) r3 / (r2in) = 6.2 ns
-1

 is the feedback strength, 

where r2 and r3 are the intensity reflectivities of the laser 

facet and the external mirror, and in is the round-trip time 

in the internal laser cavity.  is the linewidth enhancement 

factor, GN is the gain coefficient, N0 is the carrier density at 

the transparency, p is the photon decay rate,  is the 

optical angular frequency,  is the gain saturation 

coefficient, J = 1.36Jth is the injection current, Jth is the 

injection current at lasing threshold, and s is the carrier 

decay rate. We observe the intensity of the semiconductor 

laser output I(t) = |E(t)|
2
. 

In our numerical simulations, we integrated the model 

equations by using the forth-order Runge-Kutta method. 

The time-delayed feedback is discretized with an 

integration time step h. The time-delayed systems are 

treated as finite dimensional systems by this discretization. 

 

3. Finite-time Lyapunov exponents in time-delayed 

dynamical systems 

 

Dynamical systems with time-delayed feedback have 

high dimensionality and the construction of the phase 

space trajectory differs from the case for ordinary systems 

without time delay. We explain a method for calculating 

FTLEs in a dynamical system with time-delayed feedback.  

Lyapunov exponents denote a growth rate of small 

perturbations. We consider a small deviation x from an 

original chaotic trajectory x. We can obtain linearized 

equations for x by linearizing the original equations. 

    )()(J)()(J
)(




 tttt
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 (4)  

where J and J are the Jacobean with respect to x(t) and x(t 

– ),  represents delay time. It is necessary to calculate a 

norm d(t) in state space to obtain Lyapunov exponents. All 

of the variables within delay time have been considered as 

components of a state vector in time-delayed dynamical 

systems. In numerical simulations, the variables within the 

delay time are discretized with an integration time step h, 

and the number of variables within the delay time  is M = 

 / h. The norm can be calculated by using M variables as 

following, 
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The maximum Lyapunov exponent (MLE) of the 

dynamical system can be obtained by averaging the 

logarithm of fraction of the norm. 
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where N is the number of calculation step for 

normalization of the norm vector. max is an asymptotic 

value over an attractor.  

We define a finite-time Lyapunov exponent (FTLE) 

using the definition of MLE in Eq. (6). The FTLE for the 

delay time  is represented as follows: 
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This equation can be transformed for the calculation of 

FTLE for the integration step h, 
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where we use  = hM and M is an positive integer. 

Therefore, the FTLE for the integration time step h (i.e., 

also known as the local Lyapunov exponent) can be 

defined as, 
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  (9)  

From these results, the FTLE for time duration of T = hK  

(K is an positive integer) can be defined as, 
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We investigate probability distribution and its variance of 

fin(T) in the Mackey-Glass and Lang-Kobayashi models 

for various T. T is the finite time for which the growth rate 

of perturbations is measured. Note that fin(T) approaches 

MLE for large T. 

 

4. Numerical results of Mackey-Glass model 

 

We used the integration time step h = 0.05 for the 

numerical simulations of the Mackey-Glass model. A 

chaotic temporal waveform of the Mackey-Glass model is 

shown in Fig. 1(a). The maximum Lyapunov exponent max 

of this waveform is 0.058, indicating that the dynamics is 

governed by deterministic chaos. We calculated the 

probability distributions of FTLEs for the temporal 

waveform of Fig. 1(a), as shown in Fig. 1(b). We used 

three values of the finite time T (= 1, 5, and 50) to 

calculate FTLEs. For T = 1 (the black curve), a peak of the 

probability distribution is located at fin(T) = 0. The 

distribution of positive values of fin(T) is larger than that 

of negative values of fin(T), which results in the positive 

MLE of max = 0.058. For T = 5, the peak value of the 
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probability distribution of fin(T) approaches max and the 

peak height becomes lower than that for T = 1. For larger T 

= 50, the peak height becomes higher and the distribution 

is narrower than that for T = 5. 
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We investigate variances of the probability distributions 

of FTLEs when the parameter a is varied in the Mackey-

Glass model. Figure 2(a) shows the distributions of FTLEs 

for different a (a = 1.6, 2.0, and 3.4). We used T = 5, which 

equals to the delay time , for the calculation of FTLEs. 

The MLEs are max = 0.050, 0.058, and 0.044 for the 

parameter values of a = 1.6, 2.0, and 3.4, respectively. The 

peak value of the distribution becomes higher and the 

distribution becomes narrower with increase of a. We 

investigate the variances of FTLEs and the MLE as a 

function of a as shown in Fig. 2(b). Chaotic dynamics are 

obtained in 1.44 < a < 3.80 where positive max are 

obtained (the dashed red curve in Fig. 2(b)). The MLE has 

the maximum value at a~2.0, where the variance has a 

local minimum value. It is worth noting that the variance is 

increased as max is decreased for different values of a. 

Next, we changed the delay time  in the Mackey-Grass 

model. Figure 3(a) shows the probability distributions of 

FTLEs for different delay times  = 3, 5, 7, and 10. We 

fixed the finite time T = 5 for the calculation of FTLEs. 

The distribution becomes sharper as the delay time is 

increased as shown in Fig. 3(a). We also investigated the 

variances and the MLE as the delay time is changed. 

Figure 3(b) shows the variance of FTLEs (the black solid 

curve) and the MLEs (the dashed red curve). Both the 

variance and MLE decrease with increase of the delay time 

in the chaotic regimes. Therefore, the change in the 

distribution of FTLEs is dependent of system parameters. 

 

5. Numerical results of Lang-Kobayashi equations 

 

Next we investigate FTLEs in the Lang-Kobayashi 

equations for a semiconductor laser with optical feedback. 

We used the integration time step h = 0.005 ns in our 

numerical simulations. Figure 4(a) shows a temporal 

waveform of a semiconductor laser subject to time-delayed 

optical feedback with the feedback strength  = 6.21 ns
-1

. 

The MLE for this temporal waveform is max = 0.82 ns
-1

. 

The probability distributions of FTLEs for different T are 

shown in Fig. 4(b). For small T = 0.5 ns (the black curve in 

Fig. 4(b)), the peak of the distribution is located at fin = 0 

ns
-1

. The peak of the distribution is shifted from 0 to max 

and the variance of the distribution becomes smaller as T is 

increased (T = 4, 8, 64 ns in Fig. 4(b)). This behavior is 

similar to the case of the Mackey-Glass model shown in 

Fig. 1(b). 

We investigate variances of probability distributions of 

FTLEs when the coupling strength  is varied. Figure 5(a) 

shows the probability distributions for different coupling 

strengths  = 4.66, 6.21, and 7.77 ns
-1

. For  = 4.66 ns
-1

, 

the distribution has a large peak. The peak of the 

distribution is shifted to the positive direction and becomes 

lower value with increase of . The variance of the 

distribution becomes larger and the probability of positive 

fin(T) increases with increase of . Figure 5(b) shows the 

variance (the black curve) and max (the red curve) as a 

function of . Both the variance and max increase 

monotonically with increase of  in the chaotic region at  

> 4.4 ns
-1

.  

 

Fig. 1 (a) Temporal waveform of the Macke-Glass 

model and (b) probability distributions of the FTLEs 

for different finite time T (T = 1, 5, and 50). The 

parameter values of a = 2, b = 10, c = 1, and  = 5 

are used.  

Fig. 2 (a) Probability distributions of the FTLEs for 

different parameter values of a (a = 1.6, 2.0, and 3.4). 

(b) Variance of the distributions of the FTLEs and the 

MLE as a function of a in the Mackey-Glass model. 

The other parameter values are the same as in Fig. 1. 

T = 5 is used to calculate FTLEs. 

Fig. 3 (a) Probability distributions of the FTLEs for 

different parameter values of the delay time  

(and). (b) Variance of the distributions 

of the FTLEs and the MLE as a function of  in the 

Mackey-Glass model. The other parameter values 

are the same as in Fig. 1. T = 5 is used to calculate 

FTLEs. 
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Figure 6(a) shows the probability distributions of FTLEs 

for different delay time  ( = 1.3, 2.7, and 4.0 ns) at the 

fixed feedback strength ( = 6.21 ns
-1

). The peak of the 

distributions is shifted to the negative direction and the 

distribution becomes narrower with increase of . This 

result is similar to that of the Mackey-Glass model shown 

in Fig. 3(a). Figure 6(b) shows the variance of FTLEs and 

the MLEs as a function of . Both the variance (the black 

curve) and the MLEs (the red curve) decrease 

monotonically with increase of . This result is similar to 

the case for the Mackey-Glass model as shown in Fig. 

3(b). 

 

6. Conclusion 

 

We have proposed the method for calculating the FTLEs 

in time-delayed dynamical systems. Since time-delayed 

dynamical systems have high dimensionality due to time-

delayed feedback, all the variables within the delay time 

need to be considered as independent variables that are 

used for the calculation of the norm vector for the 

linearized equations. We have applied this method to the 

Mackey-Glass model and the Lang-Kobayashi equations 

and investigated the dependence of the probability 

distributions of the FTLEs on some parameter changes. 

For both of the time-delayed systems the variance of the 

distribution of FTLEs and MLEs decrease with increase of 

the delay time in the chaotic regime. 
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Fig. 4 (a) Temporal waveform of the Lang-

Kobayashi equations. (b) Probability distributions of 

the FTLEs for different finite times T (T = 0.5, 4, 8, 

and 64 ns). The feedback strength  = 6.21 ns
-1

 and 

the delay time  = 4 ns are used. Note that the 

vertical axis in (b) is semi-logarithmic plot. 

Fig. 5 (a) Probability distributions of the FTLEs for 

different parameter values of the feedback strength  

( = 4.66, 6.21, and 7.77 ns
-1

). (b) Variance of the 

FTLEs and the MLE as a function of  for the fixed 

delay time ( ns) in the Lang-Kobayashi model. 

T = 4 ns is used to calculate FTLEs. 

Fig. 6 (a) Probability distributions of the FTLEs for 

different parameter values of the delay time  ( = 

1.3, 2.7, and 4.0 ns) (b) Variance of the FTLEs and 

the MLE as a function of  for the fixed feedback 

strength ( = 6.21 ns
-1

) in the Lang-Kobayashi 

model. T = 4 ns is used to calculate FTLEs. 
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