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Abstract—Discrete breathers are spatially localized pe-
riodic solutions in nonlinear lattices. We have proved
the existence of two types of discrete breathers, i.e.,
the Sievers-Takeno and Page modes, in one-dimensional
Fermi-Pasta-Ulam lattices, based on an approach using a
fixed point theorem to the associated homogeneous poten-
tial lattice. Moreover, we have proved that the Sievers-
Takeno mode is spectrally unstable while the Page mode
is spectrally stable.

1. Introduction

Spatially localized excitations in nonlinear space-
discrete dynamical systems have attracted great interest
since the ground-breaking work by Takeno et al. [1, 2].
The localized modes are called discrete breathers (DBs)
or intrinsic localized modes. The DB is a time-periodic
and spatially localized solution of the equations of mo-
tion. It is expected that the DB is a quite general form
of localized excitation emerging in a variety of nonlinear
space-discrete systems in nature. Indeed, experimental ev-
idence for the existence of DB has been reported in vari-
ous systems [3, 4, 5, 6, 7]. Considerable progress has been
achieved in understanding the nature of DB so far (e.g.,
[8, 9, 10, 11] and references therein).
From the theoretical point of view, fundamental issues

are existence and stability of the DB solutions. Their ex-
istence has been proved in several nonlinear lattice models
[12, 13, 14, 15, 16]. The anti-continuous limit, which was
proposed by MacKay and Aubry [12], is the most useful
concept for proving the existence of DBs. An approach
based on this concept has been applied to various lattice
models such as the nonlinear Klein-Gordon lattice [12], the
nonlinear Schrödinger lattice [12], and the diatomic Fermi-
Pasta-Ulam (FPU) lattice [13]. The stability of DBs has
been mainly studied near the anti-continuous limit in sev-
eral lattice models [17, 18, 19, 20, 21, 22, 23].
There are a number of lattice models, to which the anti-

continuous limit approach is not applicable. Among them,
a typical and important model is the monoatomic FPU lat-
tice. It is known that there are two types of DBs having dif-
ferent spatial symmetries for this model, which are called
the Sievers-Takeno (ST) mode [1, 2] and Page (P) mode
[24]. These two modes were found by approximate analyt-
ical calculations.
For the FPUmodel, the existence proofs have been given

Figure 1: Profile of DB: (a) STmode, and (b) P mode. Each
particle oscillates out of phase with its nearest neighbors.

only in the case of infinite size lattice by a homoclinic orbit
method [14], a variational method [15], and a center man-
ifold reduction method [16]. An existence proof for finite
FPU lattices is still lacking, although the DBs are numer-
ically observed in the finite lattices and this fact indicates
that the infinite size is not essential for the existence of DB.
In this paper, we present existence theorems of the ST and
P modes for the one-dimensional FPU lattice with periodic
boundary conditions. Our approach is different from those
in Refs. [14, 15, 16]. A discrete breather solution is con-
structed in the associated homogeneous potential lattice by
using a fixed point theorem and then it is continued to the
nonhomogeneous potential one. An advantage of our ap-
proach is that it can provide a detail information on the
DB profile, which cannot be obtained by the previous ap-
proaches.

As for the stability of DB in the FPU lattice, it is only
numerically shown that the ST and P modes are spectrally
unstable and stable, respectively [25]. There has been no
rigorous results on the spectral stability of DBs in the FPU
lattice. Our approach is also advantageous from the point
of view of stability analysis. The present theorems show
that the ST mode is spectrally unstable while the P mode is
spectrally stable.
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2. Model

We consider the one-dimensional FPU lattice, which is
described by the Hamiltonian

H =
N∑

i=−N′

1
2
p 2i +

N∑
i=−N′

V(qi+1 − qi), (1)

where qi ∈ R and pi ∈ R represent the position and mo-
mentum of the ith particle, respectively. We employ the pe-
riodic boundary conditions, q−(N′+1) = qN and qN+1 = q−N′ .
We can assume N′ = N or N − 1 without loss of generality.
The number N0 of degrees of freedom of Hamiltonian (1)
is given by N0 = N + N′ + 1. Hamiltonian (1) describes a
one-dimensional chain of particles with nearest neighbour
interactions. We suppose the interaction potential V of the
form

V(X) = W(X, μ) +
1
k
Xk, (2)

where k ≥ 4 is an even integer and W(X, μ) : R × O → R
is a C2 function of X and μ such that W(X, 0) = 0, where
μ ∈ Rl is a set of parameters andO ⊆ Rl is a neighbourhood
of μ = 0.
The equations of motion derived from Hamiltonian (1)

are given by

q̈i = V ′(qi+1 − qi) − V ′(qi − qi−1), (3)

where i = −N′, . . . ,N. Let q̂(t) = (q̂−N′ (t), . . . , q̂N(t)) be
a T -periodic solution of Eq. (3). The spectral stability of
q̂(t) is determined by the variational equations. Let ξi be
the variation in qi, and we denote as ξ = (ξ−N′ , . . . , ξN).
Linearizing Eq. (3) along q̂(t), we obtain the variational
equations in the vector form

ξ̈ + A(t) ξ = 0, (4)

where A(t) is the Hessian matrix of the potential function
evaluated on q̂(t), i.e., its components are given by Ai j(t) =
∂2V(q̂(t))/∂qi∂q j, whereV = ∑Ni=−N′ V(qi+1 − qi).
Let { ξ1, . . . , ξ2N0 } be a system of fundamental solutions

of Eq. (4). According to the Floquet theory, the funda-
mental solutions of Eq. (4) at t and t + T are related via
a 2N0 × 2N0 monodromy matrixM as
(
ξ1(t + T ), . . . , ξ2N0 (t + T )

)
=
(
ξ1(t), . . . , ξ2N0 (t)

)
·M. (5)

Eigenvalues ofM are called the characteristic multipliers
and they are independent of the choice of fundamental so-
lutions. Let ρi, i = 1, . . . , 2N0 be the characteristic mul-
tipliers of q̂(t). The spectral stability of q̂(t) is defined as
follows.

Definition 1. Periodic solution q̂(t) is said to be spectrally
unstable if there exists ρi such that |ρi| > 1, otherwise it is
said to be spectrally stable.

3. Notations

In order to state our theorems in Sec. 4, we introduce
some notations. Consider the differential equation

φ̈ + φ k−1 = 0. (6)

Let φ(t) be a solution of Eq. (6) with the initial conditions
φ(0) = a > 0 and φ̇(0) = 0. Equation (6) has the energy
integral φ̇2/2 + φk/k = h, where h > 0 is an integration
constant, and it is regarded as a Hamiltonian system with
the potential φk/k. Since this potential is convex, it is clear
that φ(t) is a non-constant periodic solution for any a. The
period T of φ(t) depends on h (= ak/k), and it is obtained
from the energy integral as follows:

T = 2
√
2 h−(1/2−1/k)

∫ k1/k

0

1√
1 − xk/k

dx. (7)

This indicates that T continuously varies from T = +∞ to
0 as h varies from h = 0 to +∞ since the integral in Eq. (7)
is independent of h. This implies that for any given T > 0,
there exists a non-constant periodic solution φ(t) with the
period T . We denote this T -periodic solution of Eq. (6)
with φ(t;T ).
Let x be x = (x−N′ , . . . , xN) ∈ RN0 , and S ST and S P be

the subsets of RN0 defined by

S ST = { x ; xi = x−i, i = 1, 2, . . . ,N }, (8)
S P = { x ; xi = −x−(i+1), i = 0, 1, . . . ,N − 1,

and xN = 0 if N′ = N }, (9)

where x−(N′+1) = xN in the case of N′ = N − 1. These
subsets S ST and S P are the subspaces of RN0 which satisfy
the spatial symmetries of ST and P modes, respectively (cf.
Fig. 1).
We define a closed subset Bmc,r ⊂ Rn as follows:

Bmc,r =
{
x ; |xi| ≤ c for 0 ≤ i ≤ m,
|xi| ≤ cr(k−1)i−m for i > m

}
, (10)

where m ∈ N, c > 0, and 0 < r < 1. This subset Bmc,r is
specified by the three parameters (m, c, r). Equation (10)
shows that the interval of xi rapidly decreases with increas-
ing i in Bmc,r.
Consider the phase space R2N0 of Hamiltonian system

(1). We use the notations q = (q−N′ , . . . , qN) and p =
(p−N′ , . . . , pN). Let Π0 be the subspace defined by

Π0 =
{
(q, p) ;

∑N
i=−N′ qi = 0,

∑N
i=−N′ pi = 0

}
. (11)

This is the subspace in which both the mass center and the
total momentum are zero.

4. Main results

Our main theorems for the existence and spectral stabil-
ity of the DB solutions are stated as follows. Theorems 1
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and 2 are for the ST and P modes, respectively.

Theorem 1. Suppose that k = 4, N ≥ 4, and T > 0. Let
a = (a−N′ , . . . , aN) ∈ RN0 be a constant vector such that
a0 = 0.3762, a±1 = −0.1968, a±2 = 8.67× 10−3, and ai = 0
(otherwise). Then, there exists a unique x ∈ Bmc,r ∩ S ST
with m = 3, c = 10−4, and r = 3 × 10−3 such that
Γ0ST(t;T ) : q = uφ(t;T ), p = uφ̇(t;T ) is a T-periodic solu-
tion of FPU lattice (1) with μ = 0, where u = a + x. More-
over, there exist a neighbourhood U ⊆ Rl of μ = 0 and a
unique family ΓST(t;T, μ) of T-periodic solutions of system
(1) for μ ∈ U such that ΓST(t;T, μ) is C1 with respect to t
and μ, ΓST(t;T, μ) ∈ Π0, and ΓST(t;T, 0) = Γ0ST(t;T ). The
periodic solution ΓST(t;T, μ) is spectrally unstable with one
unstable characteristic multiplier.

Theorem 2. Suppose that k = 4, N ≥ 4, and T > 0. Let
a = (a−N′ , . . . , aN) ∈ RN0 be a constant vector such that
a0 = a−1 = 0.323, a1 = a−2 = −5.35 × 10−2, and ai = 0
(otherwise). Then, there exists a unique x ∈ Bmc,r ∩ S P
with m = 2, c = 3 × 10−4, and r = 6 × 10−3 such that
Γ0P(t;T ) : q = uφ(t;T ), p = uφ̇(t;T ) is a T-periodic so-
lution of FPU lattice (1) with μ = 0, where u = a + x.
Moreover, there exist a neighbourhood U ⊆ Rl of μ = 0
and a unique family ΓP(t;T, μ) of T-periodic solutions of
system (1) for μ ∈ U such that ΓP(t;T, μ) is C1 with respect
to t and μ, ΓP(t;T, μ) ∈ Π0, and ΓP(t;T, 0) = Γ0P(t;T ). The
periodic solution ΓP(t;T, μ) is spectrally stable.
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