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Abstract—An efficient three-dimensional (3D) direct integra-
tion (DI) finite-difference time-domain (FDTD) method is intro-
duced to solve electromagnetic wave propagation problems in
anisotropic magnetized plasma medium using matrix method.
Compared with previous 3D FDTD plasma method, our method is
more flexible in adjusting medium parameters thus can deal with
varied mediums. Through several simulations, the correctness of
the method are proven and the advantages are clarified. Finally,
potential applications of this method are discussed, such as the
further study of the ionosphere.

I. INTRODUCTION

Accurate simulation of electromagnetic (EM) wave propa-
gation in plasma medium is often a difficult problem for its dis-
persive and anisotropic properties. However, an time domain
approach proposed by Luebbers [1] presented a frequency-
dependent formulation for transient propagation in plasma
using the finite-difference time-domain (FDTD) method [2],
which has become an efficient solution to such problems.

After that, the time domain numerical methods, instead
of analytic ones, have become the major methods to solve
these problems and many improved techniques were proposed.
Some of the techniques [1, 3] are based on a difference
approximation of Maxwells equations coupled to an iteration
derived from the convolution integral form of the auxiliary
differential equation, which are called recursive convolution
(RC) methods. Some other techniques [4] are based on direct
finite-difference approximations of the complete field equa-
tions of the medium, which are commonly referred to as
direct integration (DI) methods. A systematic analysis of these
techniques was reviewed by S. A. Cummer [5].

Among these techniques, the DI-FDTD method has much
simpler forms and the accuracy is close to traditional RC-
FDTD method, thus many two-dimensional (2D) and three-
dimensional (3D) DI-FDTD methods were developed in the
recent years.

Due to the existence of the geomagnetic field, the iono-
sphere surrounding the Earth becomes a gyrotropic plasma
medium. Many plasma algorithms were applied to model the
EM wave propagation in Earth-ionosphere system. An initial
FDTD scheme that can deal with such an anisotropic medium
was presented by Thèvenot [6], allowing the simulation of ra-
diowave propagation in the Earth-ionosphere waveguide using
a 2D spherical-coordinate FDTD method. Cummer [7] also

reported a 2D FDTD method to simulate EM wave propagation
in the Earth-ionosphere waveguide but using the cylindrical-
coordinates. A 3D FDTD method was proposed by Lee [8]
to study the transformation of an EM wave by a dynamic
(time-varying) inhomogeneous magnetized plasma medium.
The current density vector of such method is positioned at
the center of the Yee cube to accommodate the anisotropy of
the plasma medium. Nevertheless, it is only first-order accurate
compared to another E-J collocated 3D FDTD method [9, 10]
which is more accurate and has less memory-cost. However,
the method is still not so perfect regarding the calculating time
and computer memory.

In this paper, we have improved Yu and Simpson’s 3D E-J
collocated FDTD method [10] to a more flexible one, in which
the parameter limits to maintain its accuracy are not as restrict
as before. The robustness of parameter matrix is discussed
to prove the method useful in a wide variety of fields. In
Section II, the governing equations for the 3D magnetized cold
plasma are described, as well as the the resulting FDTD time-
stepping algorithm. Section III illustrate numerical examples
of the 3D plasma FDTD method in which both unmagnetized
and magnetized plasma cases are provided. Finally, Section
IV concludes the paper and forecasts the future applications
of the 3D FDTD method.

II. APPROACH

A. Governing Equations

In this paper, plasma mediums are assumed anisotropic and
the method is based on a 3D Cartesian coordinate. Wave
propagation effect introduced by electrons, positive ions and
negative ions are included for generality. An extra magnetic
flux density BBB is set here to simulate natural geomagnetic
field. The governing equations of anisotropic magnetized cold
plasma consist of three Lorentz current equations derived from
Lorentz equation of motion which modeling the response of
each charged particle species to the electric field EEE and the
extra magnetic flux density BBB, as well as two Maxwell’s
curl equations including total induced current density JJJI and
source current density JJJS . The whole governing equation is
given by



∇×EEE = −µ0
∂HHH

∂t
(1)

∇×HHH = ε0
∂EEE

∂t
+ JJJI + JJJS (2)

∂JJJe
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+ υeJJJe = ε0ω
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PeEEE +ωωωCe × JJJe (3)

∂JJJp
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∂JJJn

∂t
+ υnJJJn = ε0ω

2
PnEEE +ωωωCn × JJJn (5)

JJJI =
∑
l

JJJ l = JJJe + JJJp + JJJn (6)

Here the subscript l indicates the charged particle species in
the plasma (e, p and n as electrons, positive ions and negative
ions, respectively). JJJe, JJJp and JJJn are the current densities
of each species. υe, υp and υn are the collision frequencies
of each species. In addition, ωPe, ωPp and ωPn shows the
plasma frequencies of each species with detailed structure in
(7).

ωPl =

√
q2l nl

ε0ml
(7)

Further, ωωωCe, ωωωCe and ωωωCe are the cyclotron frequencies of
each species given by (8).

ωωωCl =
qlBBB

ml
(8)

It is clear that the cyclotron frequency is a function of
magnetic flux density BBB so that if the cross-product terms
in (3)–(5) is set to zero, the whole governing equations will
reduce to isotropic, in other words, the wave behavior is
independent of its propagation direction.

The complete scalar equations derived from equations (1)–
(6) are shown in [10].

B. FDTD Discretization Scheme

Take the scalar equations into the FDTD grids. J com-
ponents locate at the same positions of E ones. Central
differencing of the space derivatives is employed to transform
them to the update equations which is easy for computing. On
time derivatives, J and E components are supposed to be at
the integer timesteps, indicated as n, while H components are
at the semi-integer timesteps, indicated as (n+ 1/2).

Thus, the semi-implicit equations come with a new problem
that each of E and J components must be iterated simul-
taneously. Three parameter matrices are then introduced to
solve this problem perfectly. The approach used here is very
similar to the matrix method described in [10] considering
in detail the spatial averaging but without value scaling of
H̃u = (µ0∆u/∆t)Hu[u = x, y, z] and J̃ = (∆t/ε0)J . Matrix
A and B represent the parameter coefficients of the E and J
components at the present and previous timestep and matrix
C represents the coefficients of H and JS components at
previous timestep. However, the matrix C used in Yu’s method

could be simplified as each two derivatives of H components
in third column could be grouped so that the storage of
parameter matrix is reduced. The last term of the equation
array is described by
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(9)

where the left side is the simplified matrix C.

C. Stability and Accuracy Analysis of the Scheme

Since the solutions of the semi-implicit differencing equa-
tions have a growth per timestep factor of (1− υ∆t/2)/(1 +
υ∆t/2), most of the plasma FDTD methods require a strict
criterion υ∆t � 1 that limits the efficiency of the FDTD
method [5]. However, the matrix method avoids such problem
because the elements in diagonal of matrix A equals unit or
(1+ υl∆t/2). Whether the criterion υ∆t � 1 is fitted or not,
the parameters A−1B and A−1C of iteration equation arrays
are valid. Even for magnetized case, spatial grid-cell size is
not necessary to be chosen carefully to satisfy the stability
condition and accuracy requirements. For the same reason,
the value scaling could be canceled to simplify the calculation
process.

III. DEMONSTRATION

In this Section, the modified 3D FDTD plasma method is
applied to simulate EM wave propagation in a space with a
spheric plasma object inside. The uniaxial perfectly matched
layer (UPML) boundary condition [11] is used here to absorb
the wave outside the calculation region. All the E, H and
J field components are discretized in x, y and z directions
indicated i, j and k as their subscripts. ∆x = ∆y = ∆z = 2
mm and ∆t = 3.3333 ps. A pair of z-polarized differential
Gaussian pulse dipole is generated as the wave source of our
numerical demonstrations.

A homogeneous spheric plasma object is set inside the
calculation space characterized by
electron plasma frequency:

ωPe = 1.8× 1011rad/s (10)

and neutral-electron collision frequency:

υe = 2× 1011rad/s (11)

Fig. 1 illustrates the snapshot of electric field Ez distribution
after the pulsed wave propagating for 100 timesteps. The
magnitude of all values is normalized. No extra magnetic flux
density is applied here, in other words, BBB = 0. In this case,
υ∆t < 1 is achieved to meet the fundamental requirement of
traditional plasma DI-FDTD algorithm.
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Fig. 1: Snapshot for pulsed wave propagation with a spheric
region of unmagnetized plasma (a) upper panel: xOy-plane
(b) lower panel: xOz-plane
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Fig. 2: Snapshot for pulsed wave propagation with a spheric
region of magnetized plasma (a) upper panel: xOy-plane (b)
lower panel: xOz-plane

We then apply an extra magnetic flux density BBB as Bx =
By = Bz = 2 T in order to simulate the wave propagation
through anisotropic magnetized plasma medium.

Fig. 2 shows the snapshot for the magnetized plasma
medium case. The influence of the geomagnetic field is clear
compared to Fig. 1 for its effect on wave rotation.

The final demonstration is shown in Fig. 3 as an example
of particular case in which υ∆t is significantly greater than
unit. We suppose that ∆ = 60 mm and ∆t = 100 ps and other
condition keeps the same as the first case so that υ∆t = 20
which is not under the circumstance of υ∆t � 1. The result
shows that the improved method is still stable and accurate.
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Fig. 3: Snapshot for pulsed wave propagation with a spheric
region of unmagnetized plasma under the circumstance of
υ∆t = 20 after 10000 timesteps (a) upper panel: xOy-plane
(b) lower panel: xOz-plane

IV. SUMMARY AND CONCLUSION

In this work, an efficient DI-FDTD method including
anisotropic magnetized plasma medium is presented using the
matrix method. The algorithm involves direct integration of
current density term in semi-implicit equation arrays. Since
the particular structure of the matrix, the parameter of the
plasma is more flexible than that of traditional plasma FDTD
methods.

Its validity is demonstrated by calculating the wave prop-
agation of pulse generated from a pair of polarized dipole.
The results of three simulations under different conditions,
even over the limit of tradition algorithm, agree well with the
expectation. Therefore, for its nice property in low frequency
(∆t is large), the method is supposed to be efficient to a wide
variety of applications such as the study of wave propagation
in ionosphere.

Since ionosphere is known to be an anisotropic plasma
medium to certain extent due to the geomagnetic field, the
method presented in this paper may play a role in future study
coupling to real models of the Earth-ionosphere system [12].
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[6] M. Thèvenot, J. P. Bérenger, T. Monedière, and F. Jecko,
“A FDTD scheme for the computation of VLF-LF prop-
agation in the anisotropic earth-ionosphere waveguide,”
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