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Abstract—We discuss the methods to increase random

number generation rates base on the theory which says that

nondeterministic macroscopic states can be extracted from

the amplification of intrinsic microscopic noise by a chaotic

system. The theory guarantees to obtain nondeterministic

random number sequences after microscopic noise distri-

butions converge to an invariant density. Here, we focus on

the convergence time needed by the methods such as the

multi-bit samplings and the post processing. In addition,

we consider the measurement noise which affects extracted

sequences especially using the multi-bit samplings because

the multi-bit samplings need more precise measurements.

Taking account of the advantages and the disadvantages,

we show that, in some cases, the multi-bit samplings and

the post processing are efficient to generate random num-

ber sequences at high rates.

1. Introduction

Random sequence generators are key technologies for

ciphers and numerical simulations. Various methods to

generate random sequences have been proposed. Unpre-

dictable random sequences are strongly required especially

for high security applications. There is the possibility that

physical devices can meet the expectations for nondeter-

ministic random sequence generations. Indeed, methods

to generate random sequences using chaotic semiconduc-

tor lasers have recently been proposed [1, 4, 3, 5, 8], which

can also achieve very high generation rates.

There is competition aiming at high generation rate

of random sequences using chaotic semiconductor lasers.

Some methods employ multi-bit samplings and post pro-

cessing [5, 8]. On the other hand, the quality of random

sequences are important for some applications. Harayama

et al. provided a theoretical description of how the chaotic

dynamics in lasers with optical delayed feedback transduce

microscopic quantum noise of spontaneous emission into

random transitions between macroscopic states [4]. Re-

cently Sunada et al. provided experimental evidence sup-

porting the theory [9].

We would like to discuss multi-bit samplings from the

viewpoints of the above theory. It would appear that there

is a trade off between the number of bits per sample and

the rate of sampling. A longer interval is thought to be

needed for unpredictable more bits because the conver-

gence to an invariant distribution is required in more pre-

cise resolutions. We examine the efficiency of the multi-bit

sampling by numerical experiments. In addition, we would

like to point out the effect of the measurements noise on

obtained sequences, which should be considered especially

for multi-bit sampling methods.

2. Theory

2.1. Amplification of microscopic noise

Let us suppose that we observe a variable x(t) generated

by a chaotic dynamics perturbed by the microscopic noise.

The theory for random number generation is based on the

property of the chaotic dynamics which amplifies intrinsic

nondeterministic microscopic noise such as quantum noise.

The strong chaos property implies that any smooth initial

probability density of x(t) converges to the invariant den-

sity ρ(x) corresponding to the natural invariant density of

this chaos system. We emphasize that the asymptotic in-

variant measure does not depend on the initial noise den-

sity. In principle the nondeterminism of the microscopic

noise is the origin of the nondeterminism of x(t), but the

asymptotic invariant density of the large-amplitude x(t) is

a property of the chaotic dynamics. This convergence to

the invariant density is a key fundamental point for the use

of chaotic system to generate large-amplitude signals for

robust nondeterministic random-bit generation.

2.2. Extraction of random sequence

Let us extract numbers from a chaotic time series by as-

signing the numbers 0, · · · ,N − 1 to extraction subdomains

S 0, · · · , S N−1 of x(t), where the disjoint subdomains S i are

defined by the invariant density ρ(x) so that it satisfies

∫
S 0

ρ(x)dx =
∫

S 1

ρ(x)dx = · · · =
∫

S N−1

ρ(x)dx. (1)

Then, we extract a number i when an observable x(t) is

found in a subdomain S i. Each extraction subdomain S i is

not necessarily connected. The extraction subdomains can

be constructed by dividing the domain of x into M (> N)

small subdomains and uniting the small subdomains. This

can be regarded as a so-called post processing based on the

theory. We can optimize how to construct the extraction
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subdomains. In addition, it is important to note that real

systems cannot exactly achieve the above equality which

assumes that the observation of x(t) and the classifications

of the subdomains are done with infinite precision. We will

refer this problem later from viewpoints of the measure-

ment noise.

In order to extract random numbers, we observe the

time evolution of a variable x(t) at discrete sampling times

t = 0, τ, 2τ, . . .. Let us suppose that a time series x(t) is

precisely x j at jτ, that is, x( jτ) = x j. However, just af-

ter the observation, the value of x(t) is perturbed by intrin-

sic nondeterministic microscopic noise and has a probabil-

ity density ρ0(x). Let ρt(x) be a probability distribution of

x( jτ + t), evolved from ρ0(x). If t is so long, ρt(x) is prac-

tically the same as the invariant density and numbers de-

pend only on the invariant density and the extraction sub-

domains. In this case, we obtain a number i with an even

probability, in other words, all numbers appear unbiasedly

and the successive number is independent due to the non-

deterministic property of microscopic noise. We can deter-

mine the memory time τm with an appropriate criteria in

terms of the distance of distributions such that we can not

distinguish between the invariant density and the distribu-

tion ρt(x) for t > τm.

2.3. Criterion for memory time

We employ Kullback-Leibler divergence (KL diver-

gence) to define the memory time. Let Pi be a probabil-

ity of obtaining a number i from a chaotic time series and

Qi = 1/N for all i, that is, all numbers can be obtained with

equal probabilities. KL divergence between Pi and Qi is

described as

D(P||Q) =
∑

i

Pi log
Pi

Qi
= log N − HN(P), (2)

where HN(P) (= −∑i Pi log Pi) is the entropy of the distri-

bution P. D(P||Q) can be regarded as a kind of a distance

between distributions P and Q. For example, if P and Q are

the same distributions, D(P||Q) is 0. All these things make

it clear that the distribution P can not practically be dis-

tinguished from the uniform probability distribution if KL

divergence D(P||Q) is small enough. Therefore, the mem-

ory time τm can be defined so that KL divergence D(P||Q)

becomes smaller than a critical value Dm if t > τm.

3. Noise in signal measurement system

In this section, we discuss the limitation of precisions of

the variable x(t) and thresholds Xi, which determine small

subdomains. We consider the system to measure chaotic

signals generated by chaotic semiconductor lasers. Fig-

ure 1 shows the measurement system with a photo detec-

tor and a digital oscilloscope. We investigate the intrin-

sic noise effects insides a high speed 4-channel oscillo-

scope (Tektronix DSA71254), which was used to gener-

ate fast random-bit using on-chip chaos laser in [4]. The

Figure 1: Measurement system

intrinsic noise effects can be examined by setting the com-

mon input signal to ground. Figure 2 shows an example

of the distribution of samples over quantization levels, in

the case of GND coupling and 100 mV full scale. The

Figure 2: Code distribution 18 of the 256 bins are shown.

Bin 9 corresponds to DC ground level zero volts.

so-called noise free code resolution (NFCR) is the num-

ber of bits which are not affected by the intrinsic noise of

the ADC. In the above example, the distribution is spread

over a wide range of 16 bins, so the truly noise-free bits

in the data are just (8 − 4=) 4 bits. However, large fluctu-

ations have low frequencies. The standard deviation cor-

responds to (± log2(1.53) = ±0.61 bits) 1.2 bits, giving

NFCR (8 − 1.2 =) 6.8 bits.

4. Memory time for chaotic map system

4.1. Tent map

We employ the following asymmetric tent map as a sim-

ple chaotic system to investigate the memory times.

xn+1 =

{ xn
a xn < a

xn−1
a−1

a ≤ xn
(3)

Note that the invariant density of the map is a uniform dis-

tribution for any a value. The time evolutions of KL diver-

gence D(P||Q)’s were experimentally obtained as follows.

First we prepared many narrow initial distributions, centers

of which are chosen randomly from the set of all possi-

ble initial conditions. The invariant distribution was used

as the probability distribution for the centers of initial dis-

tributions. The evolutions of each distribution determine

that of KL divergence at every time step. At every time
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step, we averaged D(P||Q)’s over all prepared initial dis-

tributions. Suppose that the critical value Dm is 0.01. In

0 5 10 15 20 25
10−4

10−2

100

time steps

D
(P

||Q
)

(a)

1 bit
2 bits
4 bits
6 bits

0 20 40 60 80 100
10−4

10−2

100

time steps

D
(P

||Q
)

(b)

1 bit
2 bits
4 bits
6 bits

0 20 40 60 80 100
10−4

10−2

100

time steps

D
(P

||Q
)

(c)

6th digit
5th digit
4th digit
3rd digit
2nd digit
1st digit

0 20 40 60 80 100
10−4

10−2

100

time steps

D
(P

||Q
)

(d)

10−3

10−4

10−5

Figure 3: Time evaluation of D(P||Q)’s for tent maps.

D(P||Q)’s of some number of bits are shown in (a) a = 0.50

and (b) a = 0.90. D(P||Q)’s for some extraction subdomain

assignments are shown in (c). D(P||Q)’s for some initial

noise amplitudes is shown in (d).

Figs. 3, we used 10000 initial distributions and 100000

initial points within each initial distribution. Figures 3 (a)

and (b) show the time evolutions of D(P||Q)’s for n bit(s)

samplings when the domain of x is divided into N (= 2n)

extraction subdomains by equally-spaced thresholds. In the

case of a = 0.5, D(P||Q)’s become smaller than Dm almost

at the same time for all multi-bit samplings, that is to say,

memory time is independent of the number of bits obtained

in one sampling. On the other hand, for a = 0.90, the time

evolutions of D(P||Q)’s make a difference and the memory

times are slightly different. As a approaches 1, the differ-

ence of the memory times tends to become larger. When

a = 0.5, the absolute value of the slop of the map is 2 ev-

erywhere. As a approaches 1, the slope of the right part of

map becomes steeper and the slope of the left part of map

becomes close to 1. The speeds of convergence depend on

the position of initial distributions. This could make the

difference of memory times among the number of bits. As

far as this experiments, since the difference is not so large

even for large a values, the multi-bit sampling is efficient

to increase the generation rates of random numbers.

There are a variety of possible assignments of small sub-

domains to construct the same 2 bits sampling. Whole

domain [0, 1] is divided into 64 equi-spaced small subdo-

mains [k/64, (k + 1)/64), k = 0, 1, · · · , 63, which are num-

bered by the binary number representation, e.g., 011010 for

k = 26. If i-th significant digit is 0 (1), then 0 (1) is assigned

to the subdomains. In inset of Fig. 3 (c), six patterns of as-

signments are shown; black (white) regions indicate a bit

of 0 (1). This process can be regarded as the so-called post

processing. We can see in Fig. 3 (c) that the assignment us-

ing the 6th digit has the smallest memory time. There are

many other assignment patterns and how to find the small-

est memory time is an optimization problem. To argue this

point is out of our purpose.

We consider the effect of initial noise intensities, or the

width of initial distributions, on the memory times. Fig-

ure 3 (d) shows the time evolutions of D(P||Q)’s for some

initial noise intensities. We can see that the memory times

are smaller as initial noise intensities are larger. The func-

tional forms shift to right as initial noise intensities become

larger, as reported by Mikami et al.[7]. At the early stage,

narrow initial distributions are simply stretched by several

iterations of this simple map. As a result, in the case of

very small noise, the multi-bit sampling is efficient.

4.2. Modified Bernoulli map

Next, we consider the following modified Bernoulli map.

xn+1 =

{
xn + 2B−1(1 − 2b)xB

n + b, xn < 1/2
xn + 2B−1(1 − 2b)(1 − xB

n ) + b, 1/2 ≤ xn
(4)

By solving Frobenius-Perron equation approximately, the

map has the invariant measure as follows [2],

ρ(x) ∼ x1−B + (1 − x)1−B. (5)
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Figure 4: Time evaluation of D(P||Q)’s for modified

Bernoulli map with B = 1.3 (a), and B = 1.8 (b).

Figure 4 shows the time evolutions of KL divergence

D(P||Q)’s for some B’s and b = 0. Although the differ-

ences of the memory times of the modified Bernoulli map

are larger than the tent maps, the increased number of bits

which can be obtained at one sampling more than make up

for the extension of the memory times for 2 ∼ 6 bits in the

case of B = 1.3, and for 4 ∼ 6 bits in the case of B = 1.8.

5. Laser with delayed optical feedback

We consider the random number generation from chaotic

semiconductor lasers. In a single mode semiconductor

laser with delayed optical feedback, the dynamics of the

macroscopic variables of light field amplitude E and the

carrier density N is described by the Lang-Kobayashi equa-

tions [6] as

dE
dt

=
1+iα

2

(
G− 1

τp

)
E+
κ

τin
E(t−τD)e−iθ+

√
CsN
τs
ξ,
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dN
dt

= J − 1

τs
N −G|E|2. (6)

The following parameter values are employed; α = 5, G0 =

10−12m3s−1, ε = 8.16 × 1024m3, τin = 14ps, τD = 0.182ns,

θ = 0rad, τs = 2.04ns, κ = 0.32, N0 = 1.4 × 1024m−3, and

Cs = 10−3. Figure 5 shows an invariant density and the

time evolutions of KL divergence D(P||Q)’s. The invariant
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Figure 5: (left) Invariant intensity distribution of Lang-

Kobayashi model and extraction thresholds for 16 divisions

(4 bits). (right) Time evaluation of D(P||Q)’s for Lang-

Kobayashi model.

density is obtained from a long term time series. Extraction

thresholds determined from equal measure partitions of the

invariant distribution of intensity are also shown in the right

figure of Fig. 5. We can see that the memory times become

longer as the number of bits sampled at one time is larger.

However, the proportional increase of memory time is less

than that of the increase of the number of bits.

6. Summary

We discuss the random number sequence generation us-

ing multi-bit sampling from chaotic time series from the

viewpoint of the theory based on the property of a chaotic

system and the intrinsic microscopic noise. In a strong

chaotic system, any smooth density of the intrinsic micro-

scopic noise converges to the invariant density. As the num-

ber of bits obtained at every sampling becomes larger, the

interval of sampling should be longer, as measured by the

KL divergence, because the more delicate convergence to

invariant density should be needed. However, the exam-

ples that we studied numerically with up to 6-bit sampling,

showed that it is possible for the memory time per bit to

decrease. This suggests that larger rates of bit generation

can be obtained with multi-bit sampling.

Another important point is the measurement noise which

affects extracted bit sequences especially with multi-bit

sampling. Our investigation shows that the oscilloscope

(Tektronix DSA71254) with 8 bits resolution ADC have

internal noise which corresponds to the 2 least significant

bits.

For multi bit sampling, we should carefully consider the

interval between samplings and the fluctuations of mea-

surement systems. Our numerical experiments showed that

multi-bit sampling can be an effective way to obtain ran-

dom number sequences if we take account of the trade-off

between the number of bits and sampling frequency.
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