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Abstract—We experimentally demonstrate amplifica-
tion of intrinsic microscopic noises by the dynamical insta-
bilities in high dimensional chaotic laser systems, semicon-
ductor lasers with delayed optical feedback. Then we dis-
cuss nondeterministic random bit generation using chaotic
lasers, and show that the relation between the entropy of
the bit sequences obtained by using chaotic lasers and the
rates of the bit extraction can be understood in terms of the
effect of the noise amplification.

1. Introduction

Fast generation of random bit sequences that are practi-
cally indistinguishable from unpredictable truly random bit
sequences is important to achieve higher security of com-
munication systems. The generation of nondeterministic
random bit sequences can be achieved by sampling observ-
ables obtained from non-deterministic physical phenomena
and converting them to bit sequences, but it is generally
difficult in practice to avoid correlations and statistical bias
when bits are generated at high speed.

Recently, methods for random bit generation using fluc-
tuations in optical phenomena have been developed in or-
der to obtain unpredictable truly random bit sequences at
fast rates over giga bit per second (Gbps) [1, 2, 3, 4]. In
particular, fast random bit generation using chaotic lasers
have attracted much attention. Many experimental and the-
oretical studies have been done for further improving of
the bit generation rate using bandwidth enhanced chaotic
lasers [5] and complex post-processing techniques [6, 7],
the miniaturization of the generators using photonic inte-
gration technologies [8, 9, 10], and realizing all optical
random bit generators [11, 12]. However, it is still un-
clear whether nondeterministic bit sequences that are prac-
tically indistinguishable from truly random bit sequences
can be really generated by using chaotic lasers. Although it
has been theoretically studied that amplification of intrinsic

microscopic fluctuation by dynamical instabilities of chaos
plays an important role in generating nondeterministic ran-
dom bits [13, 14], detailed experimental investigation of
this aspect has not yet been performed.

In this presentation, we provide an experimental method
for directly observing the effect of amplification of intrinsic
microscopic noise in chaotic lasers [15]. In the experiment,
the chaotic laser system is repeatedly operated, and the
time evolution of an ensemble of chaotic trajectories start-
ing from a same initial state is measured. It is experimen-
tally demonstrated that intrinsic microscopic noises ampli-
fied by the chaotic dynamics are transformed into macro-
scopic fluctuating signals, and the probability density of the
output light intensity exponentially converges to the natural
invariant probability density in a strongly chaotic regime.
On the basis of the convergence toward the natural invariant
density, we discuss the relation between the randomness of
the bit sequences obtained by using the chaotic lasers and
the rate of random bit extraction.

2. Microscopic noise and macroscopic randomness

First, let us start with a brief review of fundamental sta-
tistical descriptions of chaotic systems and discuss extrac-
tion of randomness from observables of the systems [13].
Here suppose that the time evolution of a system statex(t)
is described asx(t) = f tx(0), wheref is the time evolution
operator of the system. If the system is strongly chaotic,
then it has the mixing property, which can be expressed as
follow,

CAB(τ) = ⟨A( f τx)B(x)⟩ − ⟨A⟩ ⟨B⟩ →[|τ|→∞] 0, (1)

whereA and B are arbitrary square integrable functions,
and⟨X⟩ denotes a statistical ensemble,⟨X⟩ ≡

∫
Xρ(dx). ρ

is a unique invariant density of the system, natural invariant
density, which does not depend on initial states and observ-
ables. In a statistical description, Eq. (1) implies that any
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arbitrary smooth initial density functionρ0(x) converges to
the natural invariant densityρ(x). The time evolution of the
probability density is ruled by the Frobenius-Perron opera-
tor Lt:

lim
t→∞

Ltρ0(x) = ρ(x), (2)

whereLt is defined by using the Dirac delta function as
Ltρ0(x) ≡

∫
M
δ(x − f ty)ρ0(y)dy. The convergence toward

the invariant density due to the mixing property is a very
important feature of the amplification of initial small un-
certainty and the transduction to unpredictable behavior of
observables of the system.

Next, let us consider an observableY and the extraction
of the randomness from the observable. The distribution
function of an observableY also converges to a unique in-
variant distribution functionD(Y) =

∫
M
δ(Y− Ỹ(x))ρ(x)dx.

By using D(Y), we can define a discrete numberN of
macroscopic states such that the probabilities of the macro-
scopic statesXi are all equal, that is, 1/N. Specifically, we
define (N − 1) thresholdsSi of the observableY such that∫ S1

S0

D(Y)dY=
∫ S2

S1

D(Y)dY= · · · =
∫ SN

SN−1

D(Y)dY. (3)

Then we define a set of discrete macroscopic statesXi (i =
1, 2, · · · ,N) of the system such that the system is in state
Xi (i = 1,2, · · · ,N) when the observableY is found
in the interval between the thresholdsSi−1 and Si (i =
1, 2, · · · ,N). The Shannon entropy is defined as

H(X) ≡ −K
N∑

i=1

p(Xi) log p(Xi), (4)

whereX = {Xi , i = 1,2, · · · ,N} andK = 1/ logN. With the
macroscopic states defined using the thresholds in Eq. (3),
the Shannon entropy is the maximum value of unity.

In real physical systems, microscopic noise is always
present. For instance, in the cases of laser systems, there
exists quantum noise of spontaneous emission, which is
in principle unpredictable but the amplitude of the noise
is very small. No matter how accurately we observe the
state of the system, the effect of microscopic noise after the
observation means that the state should be modeled by an
ensemble. If the ensemble due to microscopic noise has
a smooth probability distribution, then from Eq. (2), one
can easily see that the time evolution of such an ensemble
is ruled by the Frobenius-Perron operator and always con-
verges to the natural invariant density in the long time limit
if the system has the mixing property. Moreover, if discrete
macroscopic states are defined appropriately, the probabil-
ity of asymptotically being in any of the macroscopic states
is equal, and the Shannon entropy is unity. Therefore, in
order to provide better understanding of physical mecha-
nism of random number generation using chaotic lasers,
it is important to confirm whether microscopic noise can
be actually amplified and transduced into macroscopic ran-
domness in chaotic laser systems.

3. Experiment

For the above purposes, we experimentally study the
transduction of initial uncertainty due to microscopic noise
into macroscopic randomness. The chaotic system stud-
ied here is a semiconductor laser device with delayed op-
tical feedback (see Fig. 1). The experiment is carried out
by resetting the dynamical state of the laser to an initial
state repeatedly and measuring the time-evolution of en-
semble of the trajectories. In this experiment, we use a
stable low dimensional state, stationary lasing state of the
solitary laser without delayed feedback, as an initial state,
because the stable state can be easily obtained by making
the feedback strength zero. Then, the feedback strength is
suddenly changed so that a chaotic state is obtained. Since
the initial stationary lasing state is close to the chaotic at-
tractor and the state rapidly approaches the attractor, the
time-evolution of the signal obtained from the state evolv-
ing in the attractor can be clearly observed. The resetting
to the same initial state is carried out by setting the feed-
back strength to zero again. Consequently, with this re-
peated switching of the feedback strength, the ensemble of
the time evolution of the chaotic signals from the same ini-
tial state can be obtained.

The experimental setup for implementing the above
method is shown in Fig.1. The feedback strength is
switched with a periodic pulse signal while the other pa-
rameters are fixed. A typical example of the experimental
result is shown in Fig. 2. This figure displays four differ-
ent time series of the output light intensity signals obtained
by switching the state of the system from stationary stable
state to the chaotic one. The origin of timet = 0 denotes
a time when the state of the laser is changed from station-
ary lasing state to chaotic one. One can clearly see that for
the chaotic regime oft > 0, initial uncertainty due to small
noise is amplified by the dynamical instability, and that the
trajectories of the signals are rapidly separated. In order to
evaluate the statistical property of the noise amplification,
we obtained the transient probability density by sampling
the light intensity signals observed at the same timet and
making a histogram. Fig. 3 shows the time-dependence of
the probability density. Fort = 0, the initial probability
density has one peak corresponding to the averaging value
of the initial stationary lasing oscillation. Fort > 0, the
width of the probability is rapidly increased. The probabil-
ity density converges to a probability density represented
by a dotted curve, which is obtained from a single long
chaotic trajectory observed in the case of the same param-
eters. That is, it is the invariant probability density charac-
terized by the chaotic dynamical system. Its convergence
to the invariant probability density implies that even if the
initial state is known, the information whereabouts of the
state in the chaotic attractor is completely lost within short
times about 1 ns. This is important for knowing the lower
limit of the sampling time interval of the light intensity for
generating unpredictable random bits.
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Figure 1: A schematic of experimental setup for measuring
amplification of microscopic noise in a semiconductor laser
with delayed optical feedback.
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Figure 2: Four temporal waveforms of chaotic intensity
starting from an initial state.
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Figure 3: Time dependence of the probability density of the
chaotic light intensity signals. The dotted curve represents
the probability density obtained from a single long chaotic
time series in the case of the same injection current value.

4. Random bit generation

In this section, we study random bit generation using
the above chaotic laser device. The random bit generation
method shown in Sec. 2 is applied to the chaotic lasers. In
this experiment, the light intensity signals obtained by the
repeated operation of the chaotic laser device are sampled
and converted into binary bits 0 or 1 based on the natu-
ral invariant probability densityρ(I ) of the light intensity
I . Fig. 4 shows the time dependence of the Shannon en-
tropy H of the generated bits. As expected, the entropy is
increased and becomes close to 1 within 1 ns. The rate of
growth of the entropy is related to the rate of convergence
to the invariant density.

It is important to note that in the present experiment, it is
difficult to control thresholdIth with infinite precision. Ac-
tually, the threshold was set with 8 bit precision, so that a
slight but significant statistical deviation from the bit prob-
ability 1/2 is caused by the lack of the resolution of the
threshold. Also, precisely speaking, entropy equal to 1 is
only achieved in the long time limit. With finite time, one
cannot obtain completely random bits.

In order to reduce the statistical bias, a logical Exclusive-
OR (XOR) operation is useful, where two independent bit
sequences generated by using two chaotic laser systems are
combined by the XOR operation and a single bit sequence
with lower statistical bias is produced. In order to evaluate
the XOR-ed bit sequences, we also measure the entropy of
the random bit generation. The result is shown in Fig. 5.
The entropy approaches 1 much faster than the case of the
single chaotic laser system shown in Fig. 4.

For further evaluating the randomness of the generated
bits, we used a standard statistical test for randomness, the
NIST Special Publication 800-22 [16], consisting of 15 dif-
ferent tests. The test is performed using 100 M samples of
a long bit sequences and a common significance levelα =
0.01. Here we emphasize that the bit sequences used for
the tests are those obtained for the ensemble of the chaotic
light intensity signals starting from the same initial state,
while previous works have used bit sequences generated
from a single chaotic trajectory of the light intensity ob-
tained by continuous operation of chaotic lasers. If the
generated bits are deterministic pseudo-random and repro-
ducible, they would never pass this test. Accordingly, with
this test, it is possible to test whether the bits appear to be
nondeterministic and unpredictable.

We confirmed that the bit sequences generated at the
sampling rate about 1.2 GHz pass all of the tests. A sig-
nificant statistical correlation occurs for higher sampling
rates, and the number of the passed tests is decreased. In
particular, the bit sequences fail the test“block frequency”,
where the ratio of the statistical frequencies of bits 0 and
1 within a specified block length is investigated. The re-
sult is related to the decrease of the entropy for the shorter
sampling time interval, as shown in Fig. 5.
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Figure 4: Time dependence of the Shannon’s entropy of the
bit sequences.
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Figure 5: Time dependence of the Shannon’s entropy of the
XOR-ed bit sequences.

5. Summary

In summary, we experimentally demonstrated that the in-
trinsic microscopic noises can be rapidly amplified by the
chaotic dynamics for very short time in the order of nano
second by resetting the state of the system to a same initial
state repeatedly. Then we investigated the non-determinism
of random bit generation with chaotic laser systems in
terms of the convergence property to the invariant density,
and discussed the relation between the bit entropy and the
convergence of initial probability density due to noise to
the invariant density. It was confirmed that the entropy of
the bit generation is related to the rate of convergence to
the invariant density.
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