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Abstract—Linear and passive control method for thethe accuracy of the mass sensing. The hysteresis and over-
steady state amplitude in a parametrically excited hingettang make it dficult to detect the boundary of the unsta-
hinged beam is proposed theoretically. In general, the magle region and to overcome thisfiiculty, some methods
nitude of steady state amplitude in parametrically excitedre proposed [5]. As one more application of the paramet-
system is determined by th&ect of cubic nonlinearity in ric resonance, the energy harvester can be mentioned [6].
the system. By changing the boundary condition due tim this paper, in order to carry out the above mentioned
the attachment of a linear spring, we modify the magnitudenhancement of filter, mass sensor, and energy harvester
of the cubic nonlinearity in the lateral direction and conin the application of parametric resonance, we propose a
trol the response amplitude of the parametrically excitedmplitude control method in which the frequency response
hinged-hinged beam. curve is suitably modified for the applications.

We consider a hinged-hinged beam under the periodic
excitation in the axial direction. When the excitation fre-
quency is in the neighborhood of twice the natural frequen-
cies, parametric resonance occurs in the beam. The fre-

There have been many researches on the parametric res- . : e
lency response curve isfected by the nonlinearity in

onance because of the characteristic response behavior @] Ar . ' .
: . the system; in the case of hinged-hinged beam, the nonlin-
ferent from the resonance under the linear external excita-

tion; for example, the steady state amplitude is determined. curvature [7, 8, 9] determines the frequency response

: - ; L curve as soft-spring type. Therefore, the lower boundary
by the inherently existing nonlinearity in the system, the AR
- ’ - . ; of the unstable region isfliicult to be detected because the
trivial response is destabilized in parameter regions and at : s . : S
iscontinuous subcritical pitchfork bifurcation is produced

the boundaries, pitchfork bifurcations occur [1]. Recently, L o
; and the overhang exists in the lower excitation frequency
these features of the parametric resonance becomes attrac- . : :
: . iqngnge [1]. We compensate the soft-spring nonlinearity by
tive to enhance the performance of the mechanical signal . . . L )
. : a linear spring attached to the supporting point in the axial
processing devices, energy harvesters, and so on. As e i . - .
. . : .direction and decrease the soft-spring characteristics to in-
onators in many microelectromechanical systems, the lin- ;
. rease the response amplitude. As a result, the slope of the
ear external resonance has been utilized to date. Recenﬁ !
S . guency response curve becomes large and the overhang
an application of the parametric resonance was propo:sedinothe frequency response curve is decreased
MEMS oscillator [2]. Mechanical filters based on paramet- q yresp '
ric excitation is theoretically and experimentally proposed
[3]. The parametric resonance is produced only in somg. Analytical Model and Equation of Motion
excitation frequency bands. In particular, the band-pass fil-
ter has the distinct advantage by using such a feature ofWe consider a hinged-hinged beam subjected to periodic
parametric resonance. As one offidiulties, it is indicated excitation in the axial direction as shown in Fig. 1(a). The
that because the nontrivial responses can exist outside excitation frequency is in the neighborhood of twice a natu-
the passband due to hysteresis and overhang, the detectiaifrequency of the beam. We propose a method to change
of the boundaries of the passband iffidult. Furthermore, the frequency response curve to decrease the inherent soft-
the parametric resonance has advantages in mass sensingg characteristics due to the nonlinear curvature of the
and overcomes the limitation of sensitivity under the conbeam. As shown in Fig. 1(b), we attach a linear spring
ventional linear external excitation in the measurement eite the axial movable supporting point in the axial direction
vironments with the low Q factor [4]. The shift of the un-so that the linear spring is in the natural length in the state
stable region can be measured withoffitet of the viscos- without lateral deflection of the beam. As a result, the lin-
ity by the modulation of the natural frequency in the casear spring fiects the linear dfiness of the beam, but can
when the measurement mass is attached to the resonatedify only the nonlinear dfiness.
Also in this application of parametric resonance, the de- Following to the previous studies [8, 9], we introduce co-

tection of the boundary of the unstable region determinexdinate system as Fig. 2 to derive the governing equation

1. Introduction
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Figure 1: Parametrically excited hinged-hinged beam and
amplitude control method by linear spring

where

! M(x,t) = Elx(x,t), N(x,t) = —=M’(x, 1),
A VAVAE N a4
= | 9
: 1+ 672 ®)

The tensionT is expressed as follows:

T(xt) = - [“kMdx— [“bydx+ N(.t) tana(l, 1)
+(=mii(l, t) + fo cosvt — ku(l))/ cos(. t).(10)

Figure 2: Co-ordinate system to derive the governing equaherek is the stifness of the spring attached to the support-

tion ing point to change the nonlinear characteristics. Applying
the inextensible conditioea = 0, we have the governing
equation of the lateral direction as follows:

of motion. e;(i = 1,2,3) is Cartesian co-ordinate system,

X
whereez = e; X e5. The cross-section whose locatien PA(l - \/2)V+PA\/f (V2 +VV)dx
is expressed with vectaK is moved to the poinP’ ex- X X 0
pressed with vector. Orthonormal basis or director is +pAV’ f f (\',,2 +VVv)dxdx
d;(i = 1,2,3). The position vectors oKX (x) andx(x, t) at l § 0
the points,P andP’, have the following relationship: _pA\/,f VIdx+ (EIVV) eV’
[
X(¥) = xe (1) 1
! -V’ focosvt|(1 + é\/2)|xz|
z(X,t) = X (X) + u(xt), (2 x
where +EI(V2 +3vV'V +V") + EIV/ fl V'V dx
u(X, t) = u(x, t)er + V(X t)es. 3)

|
—mv’ f 2+ VV)dx
0

Then, the strain is express as follows:

|
L f v2dx=0. (12)
e = {(1+U)cosh+Vsing—1}e; 2 0
+ {V cosd - (1+U)sind} ez, (4) The associated boundary conditions are
whereg is the rotation of the director vectorg;(i = 1, 2). vi0)=Vv'(0)=v(l) =Vv'(l) =0. (12)

Because the one end is freely moved in the axial direction,

we have the constraint as follows: 3. Change of Nonlinear Characteristics of Frequency

Response Curve by Linear Spring

v cosh—(L+Uu)sing=0 (5)
; The dimensionless equation of motion in the dimension-
0 v less form is expressed by using the suitable representative
6 = arctan—. (6)  values as follows:
The governing equation describingindv are expressed as . . o, . e
. VE+ w4 v (V" + v'v)dX — viv"
follows: 0
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X X R X
+\/‘”f f (7% + Vv dxdx +V/F cosvt — v - 3vjvy vy’ —v’l’f vy vy dx
1 0 1

X* 1. . 1 1
—v*"f VdX +m\/l’f ;% + VpV)dx+ EK\/l’f VZdx  (19)
1 0 0
HV AV (VY =V E* cosv (L + %\f”z(l)) The solution of Eq. (18) is
FVR L VIV vi = (A(t)d“? + A(ty)e ) sinxx, (20)

X" 1
’” 1\ eI ok k) e /2 I\pir
+V j; VIVTAX - miv j; (V" +VIV)AX \yhere we consider only the first mode. We asswgas

1 .
—%K*\f*” f v2dx =0, (13) V3 = O3(tz, )€ + C.C. (21)
0

and substituting Eq. (21) into Eq. (19), the following solv-
V(0) = v/(0) = V(1) = v'"(1) = O, (14) ability condition is enforced:
dB o a3 ) @ 2 2\R. —

where* stands for non-dimensionalized values. @ (3 + SF)Bi+ By + (B + BB =0 (22)

K* is dimensionless spring constant of the linear spring 52 + (5 — 2F)Br + a1uB;, — %2(B? + B?)B, = 0. (23)
for control, andm® is dimensionless mass at the end where ] )
the axial motion is not fixed. For simplicity, is omit- 1he dimensionless parameters;, az, and as, are ex-
ted hereafter. It is seen that thfezt of the attached lin- Pressed as follows:
ear springproduces the cubic nonlinearity in the lateral di-
rection. As a result, the nonlinear characteristics of the
frequency response curve can be modified by this line

spring.

1 1
. . 1= | —20%dxc,= | —®2dx
4. Nonlinear Analysis ' fo 1% fo !

1 1
. . . 1
We assume a uniform expansion of the approximate so- ¢z = f c(X)®1dx cq = f éd)’l’tbldx
lution as 0 0

C; C; C.
a1 = c—i,CVQZ C—i,a’3= C—j. (24)

q'rhe parametergy, Cp, andcs, are expressed as follows:

X
V=evy+ €. (15) o(X) = 2% f D2dx — 302D 072
0
The excitation frequencyis expressed by using a detuning X X
+20° DY f f /2dxdx
1 0

parametep- to the deviation of the excitation frequeney
from twice the first natural frequency as follows:

X
-3y fl O, dx— 303 — 9| D) D)’ + 3n* D]

v=2w+0o
_ 2a X 1
o=€0 (16) ~30 f YD) dx— 2muwdY f 2dx
1 0
Also, we introduce two time scales and the order estimation 3 o
for the parameters as: +5 KO L Qy7dx (25)
to=t,t, = €t,F = €2F,u = €. (17)  where®; = sinzx. From the solvability condition, we can

) _ _ describe the steady state response and examine its stabil-
By applying the method of multiple scales, we obtain th‘&y. The approximate solution is expressedByandB; as

equations for each order as: follows:
V= (ZB cos~t — 2B sin Zt) sinzx (26)
Davi +V{” =0 (18) SR 2
D3vs + V4" = —2DgD,Vy — fiDovy Brst and B in the steady state are given from Egs. (22)

and (23) with the conditiord/dt = 0. The steady state

amplitudeag, = \/m

X . .
A AR
0

X X . .
v f f (v, ” + V) )dxdx
1 0

X 20 + 4 |a2F? - a?y?
o [ v vany v, s =
1

@2

are expressed as follows:

: (27)
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0.070 [ —— without control (K =0,y = —39227) in the lateral motion. Therefore, we can modify the fre-

with control (K = 950, a = —4520) quency response of the parametric resonance by the attach-

0.060 e with contorl (K = 1349, a, = 10056)

ment of the linear spring. Experimental result by a simple
apparatus will be mentioned in the presentation.
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5. Conclusions

We deal with amplitude control and amplification of the
hinged-hinged beam under parametric excitation by attach-
ing linear spring. By changing the longitudinalfBtiess of
the movable end in the axial direction by the spring, we can
directly tune only the nonlinear characteristics of the beam
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