
IEICE Proceeding Series 

 

 

 

 

Linear and passive control method for the steady state amplitude in a 

parametrically excited hinged-hinged beam 

 

 

Hiroshi YABUNO, Hajime OHISHI 

 

 

Vol. 2 pp. 26-29 

Publication Date: 2014/03/18 

Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Linear and passive control method for the steady state amplitude in a
parametrically excited hinged-hinged beam

Hiroshi YABUNO† and Hajime OHISHI‡

†Department of Mechanical Engineering, Keio University
3-14-1 Hiyoshi Kohoku, Yokohama, 223-8522, JAPAN

Email: yabuno@esys.tsukuba.ac.jp, s.oishi0014@z2.keio.jp

Abstract—Linear and passive control method for the
steady state amplitude in a parametrically excited hinged-
hinged beam is proposed theoretically. In general, the mag-
nitude of steady state amplitude in parametrically excited
system is determined by the effect of cubic nonlinearity in
the system. By changing the boundary condition due to
the attachment of a linear spring, we modify the magnitude
of the cubic nonlinearity in the lateral direction and con-
trol the response amplitude of the parametrically excited
hinged-hinged beam.

1. Introduction

There have been many researches on the parametric res-
onance because of the characteristic response behavior dif-
ferent from the resonance under the linear external excita-
tion; for example, the steady state amplitude is determined
by the inherently existing nonlinearity in the system, the
trivial response is destabilized in parameter regions and at
the boundaries, pitchfork bifurcations occur [1]. Recently,
these features of the parametric resonance becomes attrac-
tive to enhance the performance of the mechanical signal
processing devices, energy harvesters, and so on. As res-
onators in many microelectromechanical systems, the lin-
ear external resonance has been utilized to date. Recently,
an application of the parametric resonance was proposed to
MEMS oscillator [2]. Mechanical filters based on paramet-
ric excitation is theoretically and experimentally proposed
[3]. The parametric resonance is produced only in some
excitation frequency bands. In particular, the band-pass fil-
ter has the distinct advantage by using such a feature of
parametric resonance. As one of difficulties, it is indicated
that because the nontrivial responses can exist outside of
the passband due to hysteresis and overhang, the detection
of the boundaries of the passband is difficult. Furthermore,
the parametric resonance has advantages in mass sensing
and overcomes the limitation of sensitivity under the con-
ventional linear external excitation in the measurement en-
vironments with the low Q factor [4]. The shift of the un-
stable region can be measured without effect of the viscos-
ity by the modulation of the natural frequency in the case
when the measurement mass is attached to the resonator.
Also in this application of parametric resonance, the de-
tection of the boundary of the unstable region determines

the accuracy of the mass sensing. The hysteresis and over-
hang make it difficult to detect the boundary of the unsta-
ble region and to overcome this difficulty, some methods
are proposed [5]. As one more application of the paramet-
ric resonance, the energy harvester can be mentioned [6].
In this paper, in order to carry out the above mentioned
enhancement of filter, mass sensor, and energy harvester
in the application of parametric resonance, we propose a
amplitude control method in which the frequency response
curve is suitably modified for the applications.

We consider a hinged-hinged beam under the periodic
excitation in the axial direction. When the excitation fre-
quency is in the neighborhood of twice the natural frequen-
cies, parametric resonance occurs in the beam. The fre-
quency response curve is affected by the nonlinearity in
the system; in the case of hinged-hinged beam, the nonlin-
ear curvature [7, 8, 9] determines the frequency response
curve as soft-spring type. Therefore, the lower boundary
of the unstable region is difficult to be detected because the
discontinuous subcritical pitchfork bifurcation is produced
and the overhang exists in the lower excitation frequency
range [1]. We compensate the soft-spring nonlinearity by
a linear spring attached to the supporting point in the axial
direction and decrease the soft-spring characteristics to in-
crease the response amplitude. As a result, the slope of the
frequency response curve becomes large and the overhang
in the frequency response curve is decreased.

2. Analytical Model and Equation of Motion

We consider a hinged-hinged beam subjected to periodic
excitation in the axial direction as shown in Fig. 1(a). The
excitation frequency is in the neighborhood of twice a natu-
ral frequency of the beam. We propose a method to change
the frequency response curve to decrease the inherent soft-
ening characteristics due to the nonlinear curvature of the
beam. As shown in Fig. 1(b), we attach a linear spring
to the axial movable supporting point in the axial direction
so that the linear spring is in the natural length in the state
without lateral deflection of the beam. As a result, the lin-
ear spring affects the linear stiffness of the beam, but can
modify only the nonlinear stiffness.

Following to the previous studies [8, 9], we introduce co-
ordinate system as Fig. 2 to derive the governing equation
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b)With control Attached liner spring

a)Without control Beam

Figure 1: Parametrically excited hinged-hinged beam and
amplitude control method by linear spring

Figure 2: Co-ordinate system to derive the governing equa-
tion

of motion. ei(i = 1,2,3) is Cartesian co-ordinate system,
wheree3 = e1 × e2. The cross-section whose locationP
is expressed with vectorX is moved to the pointP′ ex-
pressed with vectoru. Orthonormal basis or director is
di(i = 1,2,3). The position vectors ofX(x) andx(x, t) at
the points,P andP′, have the following relationship:

X(x) = xe1 (1)

x(x, t) = X(x) + u(x, t), (2)

where
u(x, t) = u(x, t)e1 + v(x, t)e2. (3)

Then, the strain is express as follows:

ε =
{
(1 + u′) cosθ + v′ sinθ − 1

}
e1

+
{
v′ cosθ − (1 + u′) sinθ

}
e2, (4)

whereθ is the rotation of the director vectors,di(i = 1,2).
Because the one end is freely moved in the axial direction,
we have the constraint as follows:

v′ cosθ − (1 + u′) sinθ = 0 (5)

or

θ = arctan
v′

1 + u′
. (6)

The governing equation describingu andv are expressed as
follows:

ρAü −
(
T′ + κ

M′

1 + ε

)
cosθ

−
(

M′′

1 + ε
− ε′

(1 + ε)2
M′ − κT

)
sinθ = 0 (7)

ρAv̈ −
(
T′ + κ

M′

1 + ε

)
sinθ

+

(
M′′

1 + ε
− ε′

(1 + ε)2
M′ − κT

)
cosθ = 0, (8)

where

M(x, t) = EIκ(x, t),N(x, t) = −M′(x, t),

κ =
v′′ + u′v′′ − u′′v′

(1 + ε)2
. (9)

The tensionT is expressed as follows:

T(x, t) = −
∫ x

l
κM′dx−

∫ x

l
b1dx+ N(l.t) tanθ(l, t)

+
(
−mü(l, t) + f0 cosνt − ku(l)

)
/ cosθ(l, t),(10)

wherek is the stiffness of the spring attached to the support-
ing point to change the nonlinear characteristics. Applying
the inextensible conditionε = 0, we have the governing
equation of the lateral direction as follows:

ρA(1− v′2)v̈ + ρAv′
∫ x

0
(v̇′2 + v′v̈′)dx

+ρAv′′
∫ x

l

∫ x

0
(v̇′2 + v′v̈′)dxdx

−ρAv′′
∫ x

l
v′v̈dx+ (EIv′v′′′)|x=lv

′′

−v′′ f0 cosνt|(1 +
1
2

v′2)|x=l

+EI(v′′3 + 3v′v′′v′′′ + v′′′′) + EIv′′
∫ x

l
v′′v′′′dx

−mv′′
∫ l

0
(v̇′2 + v′v̈′)dx

−1
2

kv′′
∫ l

0
v′2dx = 0. (11)

The associated boundary conditions are

v(0) = v′′(0) = v(l) = v′′(l) = 0. (12)

3. Change of Nonlinear Characteristics of Frequency
Response Curve by Linear Spring

The dimensionless equation of motion in the dimension-
less form is expressed by using the suitable representative
values as follows:

v̈∗ + µ∗v̇∗ + v∗′
∫ x∗

0
(v̇∗′2 + v∗′v̈∗′)dx∗ − v̈∗v∗′2
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+v∗′′
∫ x∗

1

∫ x∗

0
(v̇∗′2 + v′v̈∗′)dx∗dx∗

−v∗′′
∫ x∗

1
v∗′v̈∗dx∗

+v∗′(1)v∗′′′(1)v∗′′ − v∗′′F∗ cosν∗t∗(1 +
1
2

v∗′2(1))

+v∗′′3 + 3v∗′v∗′′v∗′′′ + v∗′′′′

+v∗′′
∫ x∗

1
v∗′′v∗′′′dx∗ −m∗v∗′′

∫ 1

0
(v̇∗′2 + v∗′v̈∗′)dx∗

−1
2

K∗v∗′′
∫ 1

0
v∗′2dx∗ = 0, (13)

v∗(0) = v∗′′(0) = v∗(1) = v∗′′(1) = 0, (14)

where∗ stands for non-dimensionalized values.
K∗ is dimensionless spring constant of the linear spring

for control, andm∗ is dimensionless mass at the end where
the axial motion is not fixed. For simplicity,∗ is omit-
ted hereafter. It is seen that the effect of the attached lin-
ear springproduces the cubic nonlinearity in the lateral di-
rection. As a result, the nonlinear characteristics of the
frequency response curve can be modified by this linear
spring.

4. Nonlinear Analysis

We assume a uniform expansion of the approximate so-
lution as

v = εv1 + ε3v3. (15)

The excitation frequencyν is expressed by using a detuning
parameterσ to the deviation of the excitation frequencyν
from twice the first natural frequencyω as follows:

ν = 2ω + σ

σ = ε2σ̂ (16)

Also, we introduce two time scales and the order estimation
for the parameters as:

t0 = t, t2 = ε2t, F = ε2F̂, µ = ε2µ̂. (17)

By applying the method of multiple scales, we obtain the
equations for each order as:

D2
0v1 + v′′′′1 = 0 (18)

D2
0v3 + v′′′′3 = −2D0D2v1 − µ̂D0v1

−v′1

∫ x

0
(v̇′1

2
+ v′1v̈′1)dx+ D2

0v1v′21

−v′′1

∫ x

1

∫ x

0
(v̇′1

2
+ v′1v̈′1)dxdx

+v′′1

∫ x

1
v′1v̈1dx− v′1(1)v′′′1 (1)v′′1

+v′′1 F̂ cosνt − v′′31 − 3v′1v′′1 v′′′1 − v′′1

∫ x

1
v′′1 v′′′1 dx

+mv′′1

∫ 1

0
(v̇′1

2
+ v′1v̈′1)dx+

1
2

Kv′′1

∫ 1

0
v′21 dx (19)

The solution of Eq. (18) is

v1 = (A(t2)eiωt0 + Ā(t2)e−iωt0) sinπx, (20)

where we consider only the first mode. We assumev3 as

v3 = Φ3(t2, x)eiωt0 + C.C. (21)

and substituting Eq. (21) into Eq. (19), the following solv-
ability condition is enforced:

dBr
dt − (σ2 +

α3
ω

F)Bi + α1µBr + α2
ω

(B2
r + B2

i )Bi = 0 (22)
dBi

dt + (σ2 − α3
ω

F)Br + α1µBi − α2
ω

(B2
r + B2

i )Br = 0. (23)

The dimensionless parameters,α1, α2, and α3, are ex-
pressed as follows:

α1 = c2
c1
, α2 =

c3
c1
, α3 = c4

c1
. (24)

The parameters,c1, c2, andc3, are expressed as follows:

c1 =

∫ 1

0
−2Φ2

1dx, c2 =

∫ 1

0
−Φ2

1dx

c3 =

∫ 1

0
c(x)Φ1dx, c4 =

∫ 1

0

1
2

Φ′′1 Φ1dx

c(x) = 2ω2Φ′1

∫ x

0
Φ′21 dx− 3ω2Φ1Φ′21

+2ω2Φ′′1

∫ x

1

∫ x

0
Φ′21 dxdx

−3ω2Φ′′1

∫ x

1
Φ1Φ′1dx− 3Φ′′31 − 9Φ′1Φ′′1 Φ′′′1 + 3π4Φ′′1

−3Φ′′1

∫ x

1
Φ′′1 Φ′′′1 dx− 2mω2Φ′′1

∫ 1

0
Φ′21 dx

+
3
2

KΦ′′1

∫ 1

0
Φ′21 dx, (25)

whereΦ1 = sinπx. From the solvability condition, we can
describe the steady state response and examine its stabil-
ity. The approximate solution is expressed byBr andBi as
follows:

v =

(
2Br cos

ν

2
t − 2Bi sin

ν

2
t
)
sinπx (26)

Brst and Bist in the steady state are given from Eqs. (22)
and (23) with the conditiond/dt = 0. The steady state

amplitudeast =

√
B2

rst + B2
ist are expressed as follows:

ast =

√√√
2σ ± 4

√
α2

3F2 − α2
1µ

2

α2
, (27)
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Figure 3: Change of nonlinear characteristics of frequency
response curve depending on linear stiffness of attached
spring: solid and dashed lines stand for stable and unsta-
ble steady state amplitudes, respectively.

whereα1, α2, andα3 are expressed as follows:

α1 = 1
2 , α3 = 1

4π
2 (28)

α2 = (− 1
6 − 1

2m+ 15
16π2 + 3K

8π4 )π8, (29)

whereK is the dimensionless stiffness of the attached linear
spring.

Figure 3 shows the modification fo frequency response
curve depending on the stiffness of the attached linear
spring. In the case without spring, because ofα2 < 0
from Eq. (29), the frequency response curve is softening
type. It appears that attaching the spring makes the non-
linear characteristics hardening. In the case without spring,
the subcritical and super critical pitchfork bifurcations are
produced at lower and upper frequency boundary of the un-
stable region, respectively. Increasing the stiffness of the
linear spring reverses their positions. If the spring is at-
tached which is larger than the critical value:

K =
1
3

(
π4

6
− π

4m
2
− 15

16

)
, (30)

the subcritical and supercritical pitchfork bifurcations are
produced at upper and lower frequency boundaries of the
unstable region, respectively.

In the utilization as an energy harvester,K can be tuned
to be small for the parametric amplification because smaller
K causes larger response amplitude. Also, in the applica-
tion of the parametric resonance to mechanical band-pass
filters, the smallerK makes the bifurcation sensing easier.

5. Conclusions

We deal with amplitude control and amplification of the
hinged-hinged beam under parametric excitation by attach-
ing linear spring. By changing the longitudinal stiffness of
the movable end in the axial direction by the spring, we can
directly tune only the nonlinear characteristics of the beam

in the lateral motion. Therefore, we can modify the fre-
quency response of the parametric resonance by the attach-
ment of the linear spring. Experimental result by a simple
apparatus will be mentioned in the presentation.
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