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Abstract—In this paper, a novel spiral ganglion cell
model using an asynchronous cellular automaton is pre-
sented. It is shown that the model can reproduce a parallel
spike coding function and nonlinear characteristics such as
adaptation property of the mammalian cochlear.

1. Introduction

The mammalian ear is divided into the outer ear receiv-
ing a sound wave, the middle ear amplifying the sound
wave, and the inner ear processing the sound wave. Fig.
1 shows a sketch of the cochlear in a mammalian inner
ear. In the cochlear, firstly, the basilar membrane vibrates
in response to the sound wave, secondly, the inner hair
cell transforms the mechanical vibration into an electri-
cal potential, and thirdly, the spiral ganglion cells encode
the electrical potential into paralleled spike-trains. The
cochlear of the inner ear has many nonlinearities such as
adaptation property of spike density and nonlinear band-
pass characteristics [1], [2]. The purpose of this paper is to
design a spiral ganglion cell model which has the parallel
spike coding function and the adaptation property. First,
we present a novel spiral ganglion cell model based on
an asynchronous cellular automaton neuron model [3] and
an analog chaotic spiking neuron [4]. Second, it is shown
by numerical simulations that the model can reproduce the
parallel spike coding function and the adaptation property.

2. Presented model

In this section, we present an asynchronous cellular au-
tomaton model of spiral ganglion cell. As shown in Fig.
2, this model has the following four resisters whose bit
lengths are denoted by positive integersM, L, J, andK, re-
spectively. (1) A recovery resister is anM-bit shift resister
having an integer stateP ∈ ZM ≡ {0,1, · · · ,M − 1},M ≥ 2,
encoded by the one-hot coding manner, and “≡” denotes
the “definition” hereafter. From a neuron model point of
view, the stateP can be regarded as recovery valuable.
(2) The ith (i = 0, · · · ,N − 1) membrane resister is an
L-bit shift resister having an integer stateXi ∈ ZL ≡
{0,1, · · · , L − 1}, L ≥ 2, encoded by the one-hot coding

Figure 1: Basic mechanisms of the mammalian inner ear.

manner. From a neuron model point of view, the stateXi

can be regarded as membrane potential. (3) A recovery
threshold resister is anJ-bit shift resister having an inte-
ger stateQ ∈ ZJ ≡ {0,1, · · · , J − 1}, J ≥ 2, encoded by
the one-hot coding manner. The stateQ controls a thresh-
old value of the recovery valuableP by making the state
Q upward and downward. (4) Theith membrane thresh-
old resister is anK-bit shift resister having an integer state
Ri ∈ ZK ≡ {0,1, · · · ,K − 1},K ≥ 2, encoded by the one-
hot coding manner. The stateRi controls a threshold value
of the membrane potentialXi by making the stateRi up-
ward and downward. The recovery threshold resister and
the ith membrane threshold resister realize the adaptation
characteristics. The statesP, Xi , Q, andR are clamped to
the ranges [0, · · · ,M − 1], [0, · · · , L− 1], [0, · · · , J− 1], and
[0, · · · ,K−1], respectively. As shown in Fig. 2, the resisters
are connected to each other via the following three mem-
oryless units. (i) The recovery threshold unit consists of
logic gates and reconfigurable wires. This unit determines
characteristics of the recovery resister threshold value. (ii)
The membrane threshold unit consists of logic gates and re-
configurable wires. This unit determines characteristics of
the membrane resister threshold value. (iii) The reset value
unit consists of logic gates and reconfigurable wires. From
a neuron model point of view, this unit determines values
to which the statesP andXi are reset when one of the val-
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Figure 2: An asynchronous cellular automaton model of
spiral ganglion cell.

ues reaches a threshold value. Lett be a continuous time
(t ∈ [0,∞)). The presented model accepts the following
three internal clocks:CL(t), CLi(t), andCu(t).

CL(t) =

{
1 if t = 1,2, · · · ,
0 otherwise.

The recovery resister accepts this clockCL(t). The clock
CL(t) has a normalized period 1.

CLi(t) =

{
1 if t = 1+ θi ,2+ θi , · · · , 0 < θi < 1,
0 otherwise.

The membrane resister accepts this clockCLi(t).

Cu(t) =

{
1 if t = 0,d, · · · ,
0 otherwise.

The recovery valuable threshold and membrane threshold
resisters accept this clockCu(t).

2.1. Autonomous behaviors

Let us explain dynamics of the model. We define the
following functionsB, C, andA.

B(Ri) ≡
{
αRi + β, if αRi + β ≤ L − 1,
L − 1, if αRi + β > L − 1,

C(Q) ≡
{
µQ+ λ, if µQ+ λ ≤ M − 1,
M − 1, if µQ+ λ > M − 1,

A(P) ≡ C(Q) − 1− P,

B : ZK → ZL, C : ZJ → ZM, A : ZM → ZL,
where (α, µ, β, λ) are parameters that characterize thresh-
old values of the model. The parameters (α, µ) determine
nonlinearity of the model. The parameters (β, λ) deter-
mine minimum threshold values of the stateP and the state

Xi . We refer to these functionsA, B, andC as thewiring
pattern.

The transitions of the statesP(t), Xi(t), Q(t), andRi(t) are
described by

P(t+) =


P(t) + 1, if CL(t) = 1,
0, if P(t) ≥ C(Q(t)), CL(t) = 1,
P(t), otherwise,

Xi(t+) =


Xi(t) + 1, if CLi(t) = 1,
A(P(t)), if Xi(t) ≥ B(Ri(t)), CLi(t) = 1,
Xi(t), otherwise,

Q(t+) =


Q(t) − 1, if Cu(t) = 1, Q(t) > 0,
Q(t) + 1, if P(t) ≥ C(Q(t)), Q(t) < J − 1,
Q(t), otherwise,

Ri(t+) =


Ri(t) − 1, if Cu(t) = 1, Ri(t) > 0,
Ri(t) + 1, if Xi(t) ≥ B(RI (t)), Ri(t) < J − 1,
Ri(t), otherwise,

where t+ = limϵ→0 t + ϵ, ϵ > 0. Note that these equa-
tions represent the discrete state transitions and thus are
implemented by logic gates and reconfigurable wires. In
these four equations, if the stateXi(t) reaches the thresh-
old stateB(Ri(t)), the stateXi(t) is reset to the stateA(P(t))
controlled by the stateP(t), and the model outputs the fol-
lowing spike.

yi(t) =

{
1 if Xi(t) ≥ B(Ri(t)),
0 otherwise.

Then, we explain each resisters’ transitions of the model.
The transitions of the stateP(t), the stateXi(t), the state
Q(t), and the stateRi(t) are described by a cellular automa-
ton. Repeating such integrate-and-fire dynamics, the model
outputs a spike-trainyi(t). This output spike-trainyi(t) re-
alizes a property of spike encoding function.

2.2. Non-autonomous behaviors

In this section, we define an input signal of the model.
Form a neuron model point of view, the input signal can be
regarded as astimulation input.

In a mammalian inner ear, a cochlear accepts a sinu-
soidal wave as an input signal. So, in this paper, let us
apply a Pulse Density Modulation (PDM) of a sinusoidal
wave as the input signal of the model. An input signals(t)
is written by

s(t) =

{
1 if , t = t1, t2, · · · ,
0 otherwise,

wheret = t1, t2, · · · are an input spike position. The input
spike-trains(t) induces the transition of the stateXi(t) and
the stateP(t) as follows.

Xi(t+) = X(t) + s(t), if s(t) = 1,
P(t+) = P(t) + s(t), if s(t) = 1.
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Figure 3: Whole system consists of paralleledN asyn-
chronous cellular automaton model of spiral ganglion cells.
An M-U denotes the membrane-unit. An R-U denotes the
recovery-unit.

Note again that these equations represent the discrete state
transitions and thus are implemented by logic gates and re-
configurable wires.

As shown in Fig. 3, the whole system consists of par-
alleled N asynchronous cellular automaton model of spi-
ral ganglion cells. The membrane resister and the mem-
brane threshold resister form theith membrane-unit, and
the recovery resister and the recovery threshold resister
form a recovery-unit. The input sinusoidal wavesmod(t)
is modulated to the input spike-trains(t) by the PDM. Each
ith membrane-units and the recovery-unit accept the in-
put spike-train. Eachith membrane-units are connected to
the recovery-unit parallelly. In order to analyze the spike
coding function, the following logical sum of the spike-
trains{y0(t), y1(t), · · · , yN−1(t)} is introduced.

y(t) =
N−1∪
i=0

yi(t).

The model is characterized by the following parameters.

N, M, L, J, K, α, µ, β, λ.

3. Characteristics of presented model

The spiral ganglion cells in the mammalian cochlear
have the characteristics of the parallel spike coding func-
tion and the adaptation. In this section, we show the two
properties are realized by the presented model.

Let us focus on the following parameter values.

(N, M, L, J, K, α, µ, β, λ) =

(20,288,192,64, 64,3,2,96,64).
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Figure 4: (a) Thep-unit’s Internal clockCL(t). (b) The
xi-unit’s Internal clockCLi(t). (c) An input signals(t). (d)
Thep-unit’s internal states. (e) Thexi-unit’s internal states.
(f) The xi-unit output spike-train.

In this paper, all the simulations are executed under these
parameter values. Note thatN = 20 is about the same num-
ber of human spiral ganglion cells connected to an inner
hair cell [1]. Also following [4], we set

L =
3
2

M.

3.1. Parallel spike coding function

Fig. 4(d) shows a behavior of the recovery-unit. As
shown in this figure, the functionC(Q(t)) is a threshold
value of the stateP(t). When the stateP(t) reaches the
thresholdC(Q(t)), and the recovery-unit accepts the sig-
nal from the internal clockCL(t) or the stimulation input
s(t), the stateP(t) resets toP(t) = 0 and the model out-
puts a signal to the recovery threshold resister. Depending
on the output signal, the thresholdC(Q(t)) increases. Re-
peating this dynamics, the threshold value of the stateP(t)
increases. Fig. 4(e) shows a behavior of theith membrane-
unit. As shown in this figure, the functionB(Ri(t)) is a
threshold value of the stateXi(t), and theA(P(t)) is a reset
value of the stateXi(t). When the stateXi(t) reaches the
thresholdB(Ri(t)), and theith membrane-unit accepts the
signal from the internal clockCLi(t) or the external stim-
ulation inputs(t), the stateXi(t) resets toXi(t) = A(P(t))
and the model outputs a signal to the membrane thresh-
old resister. Depending on the output signal, the threshold
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Figure 5: Input signals(t) and logical sumy(t) of the whole
outputsyi(t), i = 0, · · · ,N − 1.

B(Ri(t)) increases. Repeating this dynamics, the threshold
value of the stateXi(t) increases. When the recovery thresh-
old resister and the membrane threshold resister accept the
signal from the external clockCu(t), the stateQ(t) and the
stateRi(t) decrease, and the threshold value of the stateP(t)
and the stateXi(t) decrease. Fig. 4(f) shows an outputyi of
the ith membrane-unit. When the stateXi(t) is at the the
threshold value (i.e.,Xi(t) = B(Ri(t)) or Xi(t) > B(Ri(t))),
the presented model outputs a spikeyi(t) = 1.

Fig. 5 shows an input signalsmod(t), a pulse density mod-
ulations(t) of the input signalsmod(t) and a logical sumy(t)
of the whole outputsyi(t), i = 0, · · · ,N − 1. As shown
in Figs. 5(c) and (d), it can be confirmed that the modula-
tion signalsmod(t) is encoded intoN paralleled spike-trains
(y0(t), · · · , yN−1(t)), where the spike density of the logical
sumy(t) mimics the modulation signalsmod(t). Such a par-
allel encoding function can be found in the mammalian
cochlear [1].

3.2. Adaptation property

We define an output spike-train’s histogramh(t) by the
following equation:

h(t) = Number of spikes iny(t) for mw≤ t < (m+ 1)w,

where m = 0,1,2, · · · and w is a bin width of the his-
togram. Fig. 6 shows a histogram of the logical sumy(t)
of the whole outputsyi(t). In this figure, the bin width is
w = 100. It can be confirmed in this figure that the model

�

����

����

Figure 6: Histogram of the logical sumy(t) of the whole
outputsyi(t).

has an adaptation property, i.e., this model can detect the
onset of the input spike-trains(t). Such an adaptation prop-
erty can be found in the mammalian cochlear [2].

4. Conclusions

We presented the spiral ganglion cell model by using
the asynchronous cellular automaton. We showed that the
model exhibits nonlinear properties found in the mam-
malian cochlear, i.e., the parallel encoding function and
the adaptation property. Future problems are including fol-
lowing ones: (a) FPGA implementation and (b) more de-
tailed analysis. The authors would like to thank Professor
Toshimitsu Ushio of Osaka Univ. for valuable discussions.
This work was partially supported by the support cen-
ter for advanced telecommunications technology research
(SCAT), the telecommunications advancement foundation
(TAF), Toyota Riken Scholar, and KAKENHI Grant Num-
ber 24700225.
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