
Implementation of the Elliptic Curve Cryptography 

over Gaussian Integral Finite Group onto Excel 

Kazuki Naganuma*, Takashi Suzuki*, Hiroyuki Tsuji*, and Tomoaki Kimura* 
*Kanagawa Institute of Technology, Japan 

 

 
 

Abstract— The Elliptic Curve Cryptography is known as 

cryptography safer than the RSA Cryptosystem. Defining the 

elliptic curve over a finite field operated with 64 bits of integral 

data type currently loaded on Excel is too dangerous to implement 

the Elliptic Curve Cryptography onto Excel. Therefore, we 

propose the method of defining the elliptic curve on Gaussian 

Integer to enhance the safety. In this paper, we confirm the 

method can enhance the safety and the cryptography can be 

operated accurately. 

I. INTRODUCTION 

In 1985, Miller et al proposed the Elliptic Curve 

Cryptography (ECC), which is safer than the RSA 

Cryptosystem. It is known that 160 bits of the key length of 

ECC corresponds to 1024 bits of that of RSA Cryptosystem [1]. 

Therefore, ECC has recently spread from the viewpoints of 

calculation memory consumption and the amount of bits 

memorizing parameters. However, ECC is more complicated 

than the RSA Cryptosystem. The easier method of 

confirmation of ECC is preferable because of the difficulty. 

Hence, ECC can be confirmed easily by implementing ECC 

onto Microsoft Excel (Excel). 

Implementing ECC onto Excel has three effects as follows. 

First, it can visualize the confirmation of ECC. Second, it can 

encrypt and decrypt files such as csv file including numerical 

value data. Third, it can be used wherever Excel can be 

operated. 

On the other hands, there are problems in implementing ECC 

onto Excel. The biggest problem is the limitation of the bits 

length of calculations in integral type. Although current Excel 

has 64 bits of integral type, the finite groups constructed by the 

type are not enough to make ECC safe. Therefore the method 

to enhance the safety is required. A relative study has solved 

the limitation of integral type in C language by using CNP MP, 

which is an arbitrary precision arithmetic library [2]. However, 

the other method is required because arbitrary precision 

arithmetic on Excel seems to have high computational 

complexity. Hence, we propose the method to enhance ECC 

safety with a finite group constructed by Gaussian Integer. The 

possibility to make ECC safer by using Gaussian Integer is 

known in theory [3]. However there is nothing to mention the 

algorithm. Additionally, there is nothing to confirm operation 

in ECC accurately. 

In this paper, we consider the algorithm of congruent 

operations in Gaussian Integer. Then, we define operations on 

elliptic curves over a finite group with not integer but Gaussian 

Integer and confirm the method will be able to enhance the 

safety. Moreover, we enable ECC to be used on Excel and 

confirm the accuracy of encryption and decryption. 

II. ELLIPTIC CURVE CRYPTOGRAPHY 

A. Elliptic Curve 

Elliptic curves used in Cryptography include points 

satisfying the condition of the congruent formula as follows:  

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 

and an infinity point: 𝒪 = (∞, ∞) [4]. the a and b in formula E 

are values in a field K. Then, the K-rational-point sets of the 

elliptic curves are defined as follows [4]. 

𝐸(𝐾) = {(𝑥, 𝑦) ∈ 𝐾|𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝒪} 

B. K-rational-point Addition and Multiplication in Elliptic 

Curves 

Suppose 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) ∈ 𝐸(𝐾)  which are not 

infinity points respectively. Addition 𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3) is 

defined as follows [4]. 

{
𝑥3 = 𝜆2 − 𝑥1 − 𝑥2

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1
 

So infinity point 𝒪 is identity element in the addition, 𝑃 +
𝒪 = 𝒪 + 𝑃 = 𝑃 is satisfied. 

Multiplication is power addition. Let n be in natural number 

and 𝑃 ∈ 𝐸(𝐾). Multiplication nP is defined as follows [4]. 

𝑛𝑃 = 𝑃 + ⋯ + 𝑃(𝑛 𝑡𝑖𝑚𝑒𝑠 𝑎𝑑𝑑𝑡𝑖𝑜𝑛) 

C. the Key Length of ECC 

The safety of ECC is based on the difficulty of Discrete 

Logarithm Problem. Public key and secret key are defined as 

follows [4]. 
𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 = 𝑃, 𝐵

𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 = 𝑠
(𝑃, 𝐵 ∈ 𝐸(𝔽𝑝), 𝑠 ∈ ℕ, 𝑃 = 𝑠 ∗ 𝐵) 

ℕ is a set of natural number, and 𝔽𝑝 is a set of a finite field 

including p order of elements. 

The p limits the length of secret key. #𝐸(𝔽𝑝), which is order 

of 𝐸(𝔽𝑝) , satisfies the condition of following inequality 

because of Hasse’s theorem [4]. 

𝑝 + 1 − 2√𝑝 ≤ #𝐸(𝔽𝑝) ≤ 𝑝 + 1 + 2√𝑝 

The length of secret key does not exceed #𝐸(𝔽𝑝) because of a 

property of cyclic group. Therefore, composing elliptic curves 

with higher order finite group is required to make the length 

longer. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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III. EQUIVALENCE BETWEEN ELLIPTIC CURVES OVER 

GAUSSIAN INTEGER AND THAT OVER INTEGER 

In this chapter, the reason why elliptic curves corresponding 

128 bits of integer can be composed just by using 64 bits of 

integral type is explained. 

Suppose 𝜌 = 𝑝1 + 𝑝2𝑖 ∈ ℤ[𝑖](𝑝1, 𝑝2 ≠ 0)  and is Gaussian 

prime number. For a quotient group over 𝜌 , the following 

relation is satisfied. 

ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄ = ℤ[𝑖] 𝜌ℤ[𝑖]⁄  

ℤ[𝑖]  is a set of Gaussian Integer and ℤ  is a set of integer. 

ℤ[𝑖] 𝜌ℤ[𝑖]⁄  and ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄  are a Gaussian Integral quotient 

group over 𝜌  and an integral quotient group over 𝑝1
2 + 𝑝2

2 

respectively. 

The elements of ℤ[𝑖] 𝜌ℤ[𝑖]⁄  can be collected in integer as 

follows [5]. 

{𝑛|𝑛 ∈ ℕ ∪ {0}, 𝑛 < 𝑝1
2 + 𝑝2

2} 

The elements of ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄  can be collected as the above 

set [5]. Therefore, ℤ[𝑖] 𝜌ℤ[𝑖]⁄  is equal to ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄  and 

these sets are equal to 𝔽𝑝1
2+𝑝2

2 . Hence, ℤ[𝑖] 𝜌ℤ[𝑖]⁄ =

ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄ = 𝔽𝑝1
2+𝑝2

2 is satisfied. 

Accordingly, elliptic curves composed by ℤ[𝑖] 𝜌ℤ[𝑖]⁄  and 

ℤ (𝑝1
2 + 𝑝2

2)ℤ⁄  are both equal to E(𝔽𝑝1
2+𝑝2

2) . Thus they are 

equal to each other.  

The length of digit of 𝑝1 and that of  𝑝2 are half or shorter 

than that of 𝑝1
2 + 𝑝2

2. Whereby, elliptic curves corresponding 

128 bits of integer can be composed just by using 64 bits of 

integral type. 

IV. ALGORITHMS OF GAUSSIAN INTEGRAL OPERATION 

In this chapter, we explain how to select elements of a 

quotient group over a Gaussian Integral finite group and how 

to do arithmetic operation in Gaussian Integer. To construct K-

rational-point operations of Gaussian Integral elliptic curves, 

changing integral arithmetic and other operations in reference 

[2] into Gaussian Integral arithmetic and other operations 

below is required. It enables ECC to be constructed with 

Gaussian Integer. 

A. Composition of Gaussian Integer 

We use two integral types to compose Gaussian Integer. It 

means the types are used for real number and imaginary 

number.  

B. Limitation of a Value of Integral Type 

The limitation of a value of integral type is defined as “a max 

absolute integral value which can be used in Excel / 2” without 

overflow in one time addition. In this research, the limitation is 

defined as (2^63-1)∕2 for 64-bit version Excel. 

C. Division 

Division in Gaussian Integer is calculated in algorithm as 

follows. It is described as α β⁄ . This operation is required for 

selecting elements of a quotient group which is needed for 

congruent operations. 

 

𝛼 = 𝑎1 + 𝑎2𝑖, 𝛽 = 𝑏1 + 𝑏2𝑖 are in Gaussian Integer 

𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑜𝑢𝑛𝑑 (
𝑎1𝑏1 + 𝑎2𝑏2

𝑏1
2 + 𝑏2

2 ) + 𝑟𝑜𝑢𝑛𝑑 (
𝑎2𝑏1 − 𝑎1𝑏2

𝑏1
2 + 𝑏2

2 ) 𝑖 

return result 
 
𝑎1𝑏1+𝑎2𝑏2

𝑏1
2+𝑏2

2  and 
𝑎2𝑏1−𝑎1𝑏2

𝑏1
2+𝑏2

2  in round in line 2 are calculated in 

double type (64 bits). Round which rounds off an argument at 

first decimal place rounds down just 0.5 in this case. 

D. Selection of Elements of Quotient Group 

The selection of elements of quotient group is calculated in 

algorithm as follows. It is described as 𝛼(𝑚𝑜𝑑. 𝜋). 

 

𝛼 = 𝛼1 + 𝛼2𝑖  is in Gaussian Integer, 𝜋 = 𝑝1 + 𝑝2𝑖  is a 

Gaussian prime number 

κ ← α π⁄  

𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝛼 − 𝜋 × 𝜅 

return result 

 

𝜋 × 𝜅 in line 3 is multiplication in Gaussian Integer. 

E. Congruent Operations in Gaussian Integer 

In this section, we explain how to do congruent operations 

modulo Gaussian prime number. The congruent operations 

include congruent arithmetic operations and congruent 

exponentiation. 

i. Congruent Addition 

Congruent addition is calculated in algorithm as follows. It 

is described as 𝛼 + 𝛽(𝑚𝑜𝑑. 𝜋). 

 

𝛼 = 𝑎1 + 𝑎2𝑖, 𝛽 = 𝑏1 + 𝑏2𝑖 are elements of quotient group, 𝜋 

is a modulus 

𝑟𝑒𝑠𝑢𝑙𝑡 ← (𝑎1 + 𝑏1) + (𝑎2 + 𝑏2)𝑖 
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

return result 

 

It can be calculated without overflow because of properties 

of the elements and limitation of a max value. 

ii. Congruent Subtraction 

Congruent subtraction is calculated in algorithm as follows. 

It is described as 𝛼 − 𝛽(𝑚𝑜𝑑. 𝜋). 

 

𝛼 = 𝑎1 + 𝑎2𝑖, 𝛽 = 𝑏1 + 𝑏2𝑖  are elements of quotient, 𝜋  is a 

modulus 

𝑟𝑒𝑠𝑢𝑙𝑡 ← (𝑎1 − 𝑏1) + (𝑎2 − 𝑏2)𝑖 
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

return result 

 

It can be calculated without overflow because of properties 

of the elements and limitation of a max value. 

iii. Congruent Multiplication 

Congruent multiplication is calculated in algorithm as 

follows. It is described as 𝛼 ∗ 𝛽(𝑚𝑜𝑑. 𝜋). 

 

𝛼, 𝛽 are elements, 𝜋 is a modulus 

𝑟𝑒𝑠𝑢𝑙𝑡 ← 0 + 0𝑖 
while 𝛼 ≠ 0 + 0𝑖 

(7) 
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  do if 𝛼(𝑚𝑜𝑑. 1 + 1𝑖) ≠ 0 + 0𝑖 
    then 𝑡𝑚𝑝 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + (1 + 1𝑖) × 𝛼 

    𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑡𝑚𝑝(𝑚𝑜𝑑. 𝜋) 

  𝛽 ← (1 + 1𝑖) × 𝛽 

  𝛼 ← 𝛼 (1 + 1𝑖)⁄  

return result 

 

Multiplication in line 5 can be operated because of the 

limitation of 𝛼  and properties of multiplication by 1 + 1𝑖 . 

Although it is required to add 𝑟𝑒𝑠𝑢𝑙𝑡 and (1 + 1𝑖) × 𝛼 after 

calculating an element of (1 + 1𝑖) × 𝛼  to add without 

overflow, the representation in line 5 is abbreviated. Hereafter 

abbreviation is often used. Multiplication in line 7 also can be 

operated because of the limitation of 𝛽  and properties of 

multiplication by 1 + 1𝑖 . These multiplications are not 

congruent. Therefore “ × ” is used to represent these 

multiplications. 

iv. Congruent Division 

Congruent division is calculated in algorithm as follows. It 

is described as 𝛼 𝛽⁄ (𝑚𝑜𝑑. 𝜋). 

 

𝛼 is dividend，𝛽 is divisor，𝜋 is a modulus 

𝜋𝑛−2 ← 0 + 0𝑖 
𝜋𝑛−1 ← 1 + 0𝑖 
𝑟𝑒𝑠𝑢𝑙𝑡 ← 0 + 0𝑖 
𝜉 ← 𝜋 

𝜐 ← 𝜋 

𝜁 ← 𝜉(𝑚𝑜𝑑. 𝜐) 

𝜅 ← 𝜉 𝜐⁄  

while 𝜁 ≠ 0 + 0𝑖 
  do 𝜉 ← 𝜐 

  𝜐 ← 𝜁 

  𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝜋𝑛−2 + 𝜅 ∗ 𝜋𝑛−1(𝑚𝑜𝑑. 𝜋) 

  𝜋𝑛−2 ← 𝜋𝑛−1 

  𝜋𝑛−1 ← 𝑟𝑒𝑠𝑢𝑙𝑡 

  𝜁 ← 𝜉(𝑚𝑜𝑑. 𝜐) 

  κ ← ξ υ⁄  

𝑠𝑖𝑔𝑛 ← 𝛽 ∗ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

if 𝑠𝑖𝑔𝑛 = −1 + 0𝑖 
  then 𝑟𝑒𝑠𝑢𝑙𝑡 ← (−1 + 0𝑖) ∗ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

if 𝑠𝑖𝑔𝑛 = 0 + 1𝑖 
  then 𝑟𝑒𝑠𝑢𝑙𝑡 ← (0 − 1𝑖) ∗ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

if 𝑠𝑖𝑔𝑛 = 0 − 1𝑖 
  then 𝑟𝑒𝑠𝑢𝑙𝑡 ← (0 + 1𝑖) ∗ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 

𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝛼 ∗ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑚𝑜𝑑. 𝜋) 
return result 

 

The algorithm from line 5 to line 16 is Euclidean Algorithm. 

The inverse of 𝛽  is calculated from line1 to line 23. By 

multiplying it by 𝛼 , 𝛼 𝛽⁄ (𝑚𝑜𝑑. 𝜋)  is calculated. The 

calculation in line 12 is abbreviated. Using congruent addition 

and congruent multiplication is required. 

v. Congruent Exponentiation 

Congruent exponentiation is calculated in algorithm as 

follows. It is described as 𝛼𝑛(𝑚𝑜𝑑. 𝜋). The n is integer. 

 

α is a base，n is index，𝜋 is a modulus 

𝑟𝑒𝑠𝑢𝑙𝑡 ← 1 + 0𝑖 
while 𝑛 > 2 

  do if 𝑛 = 1 

    then 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ∗ 𝛼(𝑚𝑜𝑑. 𝜋) 

  𝛼 ← 𝛼 ∗ 𝛼(𝑚𝑜𝑑. 𝜋) 

  n ← n 2⁄  

return result 

 

n 2⁄  in line 7 is division of n by 2 in integer. 

F. Operation of 𝛼𝑎2+𝑏2
(𝑚𝑜𝑑. 𝜋) 

For realizing implementing ECC onto Excel, congruent 

exponentiation 𝛼𝑎2+𝑏2
(𝑚𝑜𝑑. 𝜋) is required. 𝑎2 + 𝑏2  in index 

can be with overflow if it is calculated directly. Therefore, it is 

calculated by using exponential law as follows. 

α𝑎2+𝑏2
= (𝛼𝑎)𝑎 ∗ (𝛼𝑏)𝑏 

In congruent operation, right side is calculated as follows. 

((α𝑎(𝑚𝑜𝑑. 𝜋))
𝑎

(𝑚𝑜𝑑. 𝜋))

∗ ((𝛼𝑏(𝑚𝑜𝑑. 𝜋))
𝑏

(𝑚𝑜𝑑. 𝜋)) (𝑚𝑜𝑑. 𝜋) 

It enables 𝛼𝑎2+𝑏2
(𝑚𝑜𝑑. 𝜋) to be calculated without overflow. 

V. DEMONSTRATIVE EXPERIMENT 

In this chapter, we conduct three experiments. First one is to 

confirm equivalence between a elliptic curve over Gaussian 

prime number 𝜌 = 𝑝1 + 𝑝2𝑖(p1, 𝑝2 ≠ 0)  and that by prime 

number 𝑝1
2 + 𝑝2

2 . The methods are to confirm the orders of 

cyclic groups with rational-point addition in Gaussian Integer 

and in integer are equal to each other and to confirm the orders 

of rational points of the elliptic curves are equal to each other. 

Second one is to confirm the safety of the ECC based on 

execution time required for brute force attack against secret 

keys generated in some max digit of Gaussian Integer and 

integer. Third one is to implement ElGamal Cryptosystem on 

Elliptic Curves with VBA of Excel and to confirm accurate 

encryption and decryption by it without overflow. 

A. Confirmation of Equivalence of Elliptic Curves 

This confirmation is conducted by programs in C language 

to calculate and output orders. In this experiment, Gaussian 

prime number 𝜌 = 4 + 5𝑖  and prime number 𝑝 = 41  are 

selected as modulus because those satisfy 𝑝1, 𝑝2 ≠ 0 and are 

not quite difficult to confirm it. 

First, equivalence of two orders of cyclic groups is confirmed. 

Elliptic Curve’s parameters a and b are selected at random. 

Coefficients of left side elliptic curve’s rational points in Fig. 1 

are the orders of cyclic groups with addition. To give an 

example, 4 in line 2: is the number. Fig. 1 shows the orders of 

cyclic groups with addition in Gaussian Integer are equal to that 

in integer. 

Then, equivalence of two orders of elliptic curve rational 

point is confirmed. Elliptic curve’s parameters a and b are 

changed from 0 to 𝑝1
2 + 𝑝2

2 − 1  respectively. The orders of 

elliptic curves over Gaussian Integer are shown in Fig. 2. The 

orders of elliptic curves over integer are shown in Fig. 3. Width, 
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depth and height in the figures are a, b and order respectively. 

The difference of Fig. 2 and Fig. 3 is shown in Fig.4 to confirm 

equivalence of Fig. 2 and Fig. 3. Fig. 4 shows the difference is 

0. Moreover, a mean and a variance of Fig. 4 are both 0. These 

prove the equivalence of two orders of elliptic curve’s rational 

points. 

We can recognize that the equivalence of the elliptic curves 

by the above two confirmations. Therefore, we assume that it 

is possible to enhance safety without introduction of an 

arbitrary precision arithmetic. 

 

Fig. 1   the Order of Cyclic Groups (left: Gaussian Integer, right: integer) 

 

Fig. 2   the Orders of Elliptic Curve’s Rational points over Gaussian 

Integer(p=4+5i) 

 

Fig. 3   the Orders of Elliptic Curve’s Rational Points over Integer (p=41) 

 

Fig. 4   the Difference of Two Orders of Elliptic Curve’s Rational Points over 

Gaussian Integer and Integer 

B. Confirmation of the Safety 

The change of attack time in changing the digit of modulus 

is shown in Fig. 5. The vertical axis is the quotient of attack 

time by time required for one addition, or the number of times 

of addition required for attack. Reference [6] is referred to 

select parameters of elliptic curves. The values which make 

ECC safe in elliptic curves 𝑦2 ≡ 𝑥3 − 𝑎𝑥(𝑚𝑜𝑑. 𝑝)  and of 

which p is the largest in a max digit are defined as parameters 

to calculate the order of elliptic curve’s rational points easily. 

To give an example, if a max digit is two, 97 is the modulus in 

integer and 94+99i is the modulus in Gaussian Integer. 

The solid line and the dashed line of Fig. 5 are attack time in 

Gaussian Integer and attack time in integer respectively. The 

value of two digits of solid line is approximately equal to that 

of four digits of dashed line. The value of three digits and the 

value of four digits of solid line are approximately equal to that 

of six digits and that of eight digits of dashed line respectively 

as well. These show the safety of Gaussian Integer 

approximately corresponds the twice digits of the safety of 

integer. Therefore this method can enhance the safety of ECC. 

 

Fig. 5   Time of Attack for Some Digits of Modulus 

C. Confirmation of Operations on Excel 

The operations of functions implemented onto Excel are 

shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9. The value which is 

Gaussian prime number and of which real number or imaginary 
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number is close to the max value is defined as modulus. The 

other parameters a and b are defined at random. 

The enc(plain text, public key, parameter) in line encryption 

in Fig. 6 is the function of encryption, and the decryp(cipher 

text, private key, parameter) in line decryption in Fig. 8 is the 

function of decryption. The functions of encryption and 

decryption are shown in Fig. 7 and Fig. 9 respectively. 

In encryption, the first argument of enc is “1234567890” 

which is a plain text. The second argument is the value of 

“public key” and the third argument is the value of “parameter” 

respectively as well. The cipher text generated by this function 

is shown in line “cipher text” in Fig. 6. 

In decryption, the first argument of decryp is the cipher text 

generated by the encryption. The second argument is value of 

line “private key” and the third argument is the value of 

“parameter”. The decrypted text generated by this decryption 

is shown in line “decrypted text” in Fig. 8. This decrypted text 

is equal to the plain text in Fig. 6, and these functions are 

operated without any error. Therefore, ECC over Gaussian 

Integer can be operated without overflow.

 

Fig. 6   Encryption on Excel 

 

Fig. 7   Encryption on Excel (Appearance of Function) 

 

Fig. 8   Decryption on Excel 

 

Fig. 9   Decryption on Excel (Appearance of Function) 

 

VI. CONCLUSION 

In this paper, it is confirmed that the safety of ECC is 

enhanced with only integral type of Excel. Therefore the ECC 

safer than the ECC with only integral type is implemented onto 
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Excel without an arbitrary precision arithmetic library. In 

future, we would like to implement the ECC with an arbitrary 

precision arithmetic onto Excel and compare it with the ECC 

over Gaussian Integer. 
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