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Abstract— The Elliptic Curve Cryptography is known as
cryptography safer than the RSA Cryptosystem. Defining the
elliptic curve over a finite field operated with 64 bits of integral
data type currently loaded on Excel is too dangerous to implement
the Elliptic Curve Cryptography onto Excel. Therefore, we
propose the method of defining the elliptic curve on Gaussian
Integer to enhance the safety. In this paper, we confirm the
method can enhance the safety and the cryptography can be
operated accurately.

l. INTRODUCTION

In 1985, Miller et al proposed the Elliptic Curve
Cryptography (ECC), which is safer than the RSA
Cryptosystem. It is known that 160 bits of the key length of
ECC corresponds to 1024 bits of that of RSA Cryptosystem [1].
Therefore, ECC has recently spread from the viewpoints of
calculation memory consumption and the amount of bits
memorizing parameters. However, ECC is more complicated
than the RSA Cryptosystem. The easier method of
confirmation of ECC is preferable because of the difficulty.
Hence, ECC can be confirmed easily by implementing ECC
onto Microsoft Excel (Excel).

Implementing ECC onto Excel has three effects as follows.
First, it can visualize the confirmation of ECC. Second, it can
encrypt and decrypt files such as csv file including numerical
value data. Third, it can be used wherever Excel can be
operated.

On the other hands, there are problems in implementing ECC
onto Excel. The biggest problem is the limitation of the bits
length of calculations in integral type. Although current Excel
has 64 bits of integral type, the finite groups constructed by the
type are not enough to make ECC safe. Therefore the method
to enhance the safety is required. A relative study has solved
the limitation of integral type in C language by using CNP MP,
which is an arbitrary precision arithmetic library [2]. However,
the other method is required because arbitrary precision
arithmetic on Excel seems to have high computational
complexity. Hence, we propose the method to enhance ECC
safety with a finite group constructed by Gaussian Integer. The
possibility to make ECC safer by using Gaussian Integer is
known in theory [3]. However there is nothing to mention the
algorithm. Additionally, there is nothing to confirm operation
in ECC accurately.

In this paper, we consider the algorithm of congruent
operations in Gaussian Integer. Then, we define operations on
elliptic curves over a finite group with not integer but Gaussian
Integer and confirm the method will be able to enhance the
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safety. Moreover, we enable ECC to be used on Excel and
confirm the accuracy of encryption and decryption.

Il.  ELLIPTIC CURVE CRYPTOGRAPHY

A.  Elliptic Curve

Elliptic curves used in Cryptography include points
satisfying the condition of the congruent formula as follows:
yi=x3+ax+b 1)
and an infinity point: O = (oo, o) [4]. the aand b in formula E
are values in a field K. Then, the K-rational-point sets of the
elliptic curves are defined as follows [4].
EK)={(x,y) eKly? =x*+ax+b}u{0} (2

K-rational-point Addition and Multiplication in Elliptic
Curves
Suppose P = (x1,¥1),Q = (x3,v,) € E(K) which are not
infinity points respectively. Addition R = P + Q = (x3,¥3) iS
defined as follows [4].
X3 =22 —x; — %,
{Y3 = A0 —x3) =) ®)
So infinity point O is identity element in the addition, P +
0 = 0 + P = P is satisfied.
Multiplication is power addition. Let n be in natural number
and P € E(K). Multiplication nP is defined as follows [4].
nP = P + -+ P(n times addtion) 4)

the Key Length of ECC
The safety of ECC is based on the difficulty of Discrete
Logarithm Problem. Public key and secret key are defined as

follows [4].
Publi =P,B
;‘fﬁﬁi‘iﬁy _'"(P,B€E(F,),s €N,P =5+B)(5)
Nis a set of natural number, and [F,, is a set of a finite field
including p order of elements.

The p limits the length of secret key. #E (F, ), which is order
of E(F,), satisfies the condition of following inequality
because of Hasse’s theorem [4].

p+1-2/p<#E(F,)<p+1+2/p (6)
The length of secret key does not exceed #E (F,) because of a
property of cyclic group. Therefore, composing elliptic curves
with higher order finite group is required to make the length
longer.

B.

C.



RS2-5

I1l.  EQUIVALENCE BETWEEN ELLIPTIC CURVES OVER

GAUSSIAN INTEGER AND THAT OVER INTEGER

In this chapter, the reason why elliptic curves corresponding
128 bits of integer can be composed just by using 64 bits of
integral type is explained.

Suppose p = p; + p,i € Z[i](p;, p, # 0) and is Gaussian
prime number. For a quotient group over p, the following
relation is satisfied.

Z/(pf + pHL = Zlil/pZli] ()
Z[i] is a set of Gaussian Integer and Z is a set of integer.
Z[il/pZ[i] and Z/ (p? + p2)Z are a Gaussian Integral quotient
group over p and an integral quotient group over p? + p2
respectively.

The elements of Z[i]/pZ[i] can be collected in integer as
follows [5].

{nln e Nu {0},n < p? + p3}
The elements of Z/(p? + p2)Z can be collected as the above
set [5]. Therefore, Z[i]/pZl[i] is equal to Z/(p? + p3)Z and
these sets are equal to F : Hence, Z[i]/pZ[i] =

pi+ps *
Z/(pf + P3)L = F 2,z is satisfied.
Accordingly, elliptic curves composed by Z[i]/pZ[i] and
Z/(p? + p2)Z are both equal to E(IF ) Thus they are
equal to each other.
The length of digit of p; and that of p, are half or shorter
than that of p? + p2. Whereby, elliptic curves corresponding

128 bits of integer can be composed just by using 64 bits of
integral type.

Pi+p3

IV. ALGORITHMS OF GAUSSIAN INTEGRAL OPERATION

In this chapter, we explain how to select elements of a
quotient group over a Gaussian Integral finite group and how
to do arithmetic operation in Gaussian Integer. To construct K-
rational-point operations of Gaussian Integral elliptic curves,
changing integral arithmetic and other operations in reference
[2] into Gaussian Integral arithmetic and other operations
below is required. It enables ECC to be constructed with
Gaussian Integer.

A.  Composition of Gaussian Integer

We use two integral types to compose Gaussian Integer. It
means the types are used for real number and imaginary
number.

B. Limitation of a Value of Integral Type

The limitation of a value of integral type is defined as “a max
absolute integral value which can be used in Excel / 2” without
overflow in one time addition. In this research, the limitation is
defined as (2°63-1)2 for 64-bit version Excel.

C. Division
Division in Gaussian Integer is calculated in algorithm as
follows. It is described as /. This operation is required for

selecting elements of a quotient group which is needed for
congruent operations.
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a = a; + a,i, f = by + b,i are in Gaussian Integer

a;b; + a,b a,b; —ab
101 22>+round<2 1 12)1’

result « round
( b} + b3 b? + b3

return result

aibi+azb, a;bi—aiby
bZ+b2 b2+b?
double type (64 bits). Round which rounds off an argument at
first decimal place rounds down just 0.5 in this case.

D.

and in round in line 2 are calculated in

Selection of Elements of Quotient Group

The selection of elements of quotient group is calculated in
algorithm as follows. It is described as a(mod. ).

a=a; +a,i is in Gaussian Integer, T =p, +p,i is a
Gaussian prime number

K< o/m

result « a —m X k

return result

7 X k in line 3 is multiplication in Gaussian Integer.

E. Congruent Operations in Gaussian Integer

In this section, we explain how to do congruent operations
modulo Gaussian prime number. The congruent operations
include congruent arithmetic operations and congruent
exponentiation.

i Congruent Addition

Congruent addition is calculated in algorithm as follows. It

is described as @ + B (mod. ).

a = a, + ayi, B = by + b,i are elements of quotient group,
is a modulus

result « (a; + by) + (a; + by)i

result « result(mod. )

return result

It can be calculated without overflow because of properties
of the elements and limitation of a max value.
ii. Congruent Subtraction

Congruent subtraction is calculated in algorithm as follows.
It is described as @ — f(mod. ).

a = a, + ayi,f = by, + b,i are elements of quotient,  is a
modulus

result « (a; — by) + (a; — by)i

result « result(mod.m)

return result

It can be calculated without overflow because of properties
of the elements and limitation of a max value.
iii. Congruent Multiplication

Congruent multiplication is calculated in algorithm as
follows. It is described as a * 8 (mod. 7).

a, B are elements, m is a modulus
result < 0 + 0i
while @ # 0 + 0i
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doif a(mod.1+ 1i) # 0+ 0i
then tmp « result + (1 + 1i) X a
result « tmp(mod. )
B (1+1)xp
a—a/(1+10)
return result

Multiplication in line 5 can be operated because of the
limitation of « and properties of multiplication by 1+ 1i.
Although it is required to add result and (1 + 1i) X « after
calculating an element of (14 1i) X a to add without
overflow, the representation in line 5 is abbreviated. Hereafter
abbreviation is often used. Multiplication in line 7 also can be
operated because of the limitation of g and properties of
multiplication by 1+ 1i . These multiplications are not
congruent. Therefore “ X ” is used to represent these
multiplications.

iv. Congruent Division

Congruent division is calculated in algorithm as follows. It

is described as a /B (mod. ).

a is dividend, g isdivisor, m isa modulus
Ty < 04+ 00
Ty < 1400
result < 0 + 0i
§em
VeT
{ « &(mod.v)
K&/
while ¢ # 0 + 0i
doé «v
ve(
result « m,_, + K * m,_,(mod.m)
Tp—2 < Mp-1
T,_1 < result
{ « &(mod.v)
k< &/v
sign « B * result(mod. )
if sign =—-1+0i
then result « (—1 + 0i) = result(mod. )

if sign =0+ 1i
then result « (0 — 1i) * result(mod. )
if sign =0 —1i

then result « (0 + 1i) * result(mod. )
result « a * result(mod.m)
return result

The algorithm from line 5 to line 16 is Euclidean Algorithm.
The inverse of g is calculated from linel to line 23. By
multiplying it by a, a/f (mod.m) is calculated. The
calculation in line 12 is abbreviated. Using congruent addition
and congruent multiplication is required.

V. Congruent Exponentiation

Congruent exponentiation is calculated in algorithm as

follows. It is described as a™(mod. ). The n is integer.
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aisabase, nisindex, misamodulus
result « 1+ 0i
whilen > 2
doifn=1
then result « result * a(mod.m)
a < a* a(mod.m)
n<n/2
return result

n/2 in line 7 is division of n by 2 in integer.

Operation of ®**2* (mod. 1)
For realizing implementing ECC onto Excel, congruent
exponentiation a® +2*(mod. ) is required. a + b? in index
can be with overflow if it is calculated directly. Therefore, itis
calculated by using exponential law as follows.

a®*th? = (@®)®  (ab)P
In congruent operation, right side is calculated as follows.

(((x“(mod.n))a(mod.n))
* <(ab(mod. n))b(mod. n)) (mod.m)

It enables a“z”’z(mod. ) to be calculated without overflow.

F.

V. DEMONSTRATIVE EXPERIMENT

In this chapter, we conduct three experiments. First one is to
confirm equivalence between a elliptic curve over Gaussian
prime number p = p; + p,i(p1,p; # 0) and that by prime
number p? + pZ. The methods are to confirm the orders of
cyclic groups with rational-point addition in Gaussian Integer
and in integer are equal to each other and to confirm the orders
of rational points of the elliptic curves are equal to each other.
Second one is to confirm the safety of the ECC based on
execution time required for brute force attack against secret
keys generated in some max digit of Gaussian Integer and
integer. Third one is to implement EIGamal Cryptosystem on
Elliptic Curves with VBA of Excel and to confirm accurate
encryption and decryption by it without overflow.

A. Confirmation of Equivalence of Elliptic Curves

This confirmation is conducted by programs in C language
to calculate and output orders. In this experiment, Gaussian
prime number p =4 + 5i and prime number p =41 are
selected as modulus because those satisfy p,,p, # 0 and are
not quite difficult to confirm it.

First, equivalence of two orders of cyclic groups is confirmed.
Elliptic Curve’s parameters a and b are selected at random.
Coefficients of left side elliptic curve’s rational points in Fig. 1
are the orders of cyclic groups with addition. To give an
example, 4 in line 2: is the number. Fig. 1 shows the orders of
cyclic groups with addition in Gaussian Integer are equal to that
in integer.

Then, equivalence of two orders of elliptic curve rational
point is confirmed. Elliptic curve’s parameters a and b are
changed from 0 to p? + pZ — 1 respectively. The orders of
elliptic curves over Gaussian Integer are shown in Fig. 2. The
orders of elliptic curves over integer are shown in Fig. 3. Width,
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depth and height in the figures are a, b and order respectively.
The difference of Fig. 2 and Fig. 3 is shown in Fig.4 to confirm
equivalence of Fig. 2 and Fig. 3. Fig. 4 shows the difference is
0. Moreover, a mean and a variance of Fig. 4 are both 0. These

Y 1
prove the equivalence of two orders of elliptic curve’s rational %
points. 5 05
We can recognize that the equivalence of the elliptic curves = ’ -
by the above two confirmations. Therefore, we assume that it ° 28
is possible to enhance safety without introduction of an = 0 14
arbitrary precision arithmetic. 051015 20 0
a=-2-2i a =16 25 30 35 40 the mean : 0
b= 0+0i b=0 ,
p = 4+bi p =4 a the variance : 0
0 : 2+( 0400, 0+0i) = (inf, inf)| 0 : 2¢( 0, 0 = (inf, inf)
2 1 4x( 2400, 0+i) = (inf, inf) 2 1 4%( 2, 9) = (inf, inf)
g : g*g 3+2| *6*8'% = Eln; IHR g QIE g . 183 = E:g; :ER Fig. 4 the Difference of Two Orders of Elliptic Curve’s Rational Points over
. L +4 1, +U1) = (IntT, In . , = , H
6 B#(3-1i, 0-4i) = (inf inf) 6 - 8x(6. 5) = (inf. inf) Gaussian Integer and Integer
7 8k(-2-1i, 2+40i) = (inf, inf) 7 : 8( 7. 2) = (inf, inf)
TR pai =i e AR
ook 211, —=Z1) = (InT, In . o% f = \nt, In 1 1
o wm sl B ek e
©oox( U=3l, =41) = (InT, In * = (T, In 1 i i 101
30 : 8x(=2+1i. —2-2i) = (inf. inf)30 : 8%(30 , 16) = (inf, inf) _ The cha_nge_of attack time in chapgl_ng the dlg!t of modulus
33 1 4x( 1410, —4+0i) = (inf, inf)33 : 4x@3 . 4) = (inf, inf) is shown in Fig. 5. The vertical axis is the quotient of attack
A WL DT I od R i e time by time required for one addition, or the number of times
gfy; : i:é%@, g:?gg = Ein;, mg gg g %:Egg : gg = Em; :QR of addition required for attack. Reference [6] is referred to
30 - 4%(2+0i 1400) = (inf inf)30 : 430 . 1 = (inf. inP select parameters of elliptic curves. The values which make

ECC safe in elliptic curves y? = x3 — ax(mod.p) and of
which p is the largest in a max digit are defined as parameters
to calculate the order of elliptic curve’s rational points easily.
To give an example, if a max digit is two, 97 is the modulus in
integer and 94+99i is the modulus in Gaussian Integer.

The solid line and the dashed line of Fig. 5 are attack time in
Gaussian Integer and attack time in integer respectively. The
value of two digits of solid line is approximately equal to that
= of four digits of dashed line. The value of three digits and the
value of four digits of solid line are approximately equal to that
of six digits and that of eight digits of dashed line respectively
as well. These show the safety of Gaussian Integer
approximately corresponds the twice digits of the safety of
integer. Therefore this method can enhance the safety of ECC.

Fig. 1 the Order of Cyclic Groups (left: Gaussian Integer, right: integer)

the order

Fig. 2 the Orders of Elliptic Curve’s Rational points over Gaussian

Integer(p=4+5i) - 1.E+08 4

o

< £ LE+06 Pt

£3 =

é 5 -

£%6 LE+02
[«5)
£ 1E+00

the order

digit (decimal)

e rate (gauss) e o rate(int)

Fig. 5 Time of Attack for Some Digits of Modulus
Fig. 3 the Orders of Elliptic Curve’s Rational Points over Integer (p=41)

C. Confirmation of Operations on Excel

The operations of functions implemented onto Excel are
shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9. The value which is
Gaussian prime number and of which real number or imaginary
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number is close to the max value is defined as modulus. The
other parameters a and b are defined at random.

The enc(plain text, public key, parameter) in line encryption
in Fig. 6 is the function of encryption, and the decryp(cipher
text, private key, parameter) in line decryption in Fig. 8 is the
function of decryption. The functions of encryption and
decryption are shown in Fig. 7 and Fig. 9 respectively.

In encryption, the first argument of enc is “1234567890”
which is a plain text. The second argument is the value of
“public key” and the third argument is the value of “parameter”

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019), Sep. 4-6, 2019

respectively as well. The cipher text generated by this function
is shown in line “cipher text” in Fig. 6.

In decryption, the first argument of decryp is the cipher text
generated by the encryption. The second argument is value of
line “private key” and the third argument is the value of
“parameter”. The decrypted text generated by this decryption
is shown in line “decrypted text” in Fig. 8. This decrypted text
is equal to the plain text in Fig. 6, and these functions are
operated without any error. Therefore, ECC over Gaussian
Integer can be operated without overflow.

encryption enc(plain text, public key, parameter)
parameter (10+0i,04+0i,2157241651175857360+22557736844656112971)
(-803719167948622100+-94838834634810116i,-10219190287803525624+-681565794356246993i),,(-
public key 995427229222704790+8208657273567928641,-370817760315927499+-1195435618686159042i)
plain text 1234567890
(4512691229328743604+-296888417279811333i,-2495161567506807154+4415065728162097481).,.(-
cipher text 894076992567145704+12524309921179043081,574720326960268275+-1116265213372565357i1)
Fig. 6 Encryption on Excel
encryption enciplain text, public key, parameter)
parameter (10401,0+0i,2157241651175857360+22557736844656112971)
(-803719167948622100+-94838834634810116i,-1021919028780352567+6815657943562469931),.(-
public key 995427229222704790+8208657273567928641,-370817760315927499+-11954356186861590421)
plain text 12345678580
cipher text =enc(CH,C4,C3)
Fig. 7 Encryption on Excel (Appearance of Function)
decryption decryp(cipher text, private key, parameter)
parameter (10+40i,0+0i,2157241651175857360+2255773684465611297i)
private key r 111110010010101011101010000110001100110001111111101111110100110110011
(451269122932874360+-296888417279811333i,-249516156750680715+4415065728162097481),.(-
cipher text 894076992567145704+12524309921179043081,574720326960268275+-11162652133725653571)

decrypted text

1234567890

Fig. 8 Decryption on Excel

decryption decryplcipher text, private key, parameter)

parameter (10+0i,0+0i,21572416511 75857360+ 22557 736844656112971)

private key 111110010010101011101010000110001100110001111111101111110100110110011
(451269122932874360+-2968884172798113331,-249516156750680715+4415065728162097481),,(-

cipher text 894076992567145704+1252430992117904308i1,574720326960268275+-11162652133725653571)

decrypted text =decryp(C5,C4,C3)

Fig. 9 Decryption on Excel (Appearance of Function)

VI. CONCLUSION
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In this paper, it is confirmed that the safety of ECC is
enhanced with only integral type of Excel. Therefore the ECC
safer than the ECC with only integral type is implemented onto
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Excel without an arbitrary precision arithmetic library. In
future, we would like to implement the ECC with an arbitrary
precision arithmetic onto Excel and compare it with the ECC
over Gaussian Integer.
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