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Abstract—Measurements in reverberation chambers are
usually performed by changing the electromagnetic environ-
ment using either mechanical or frequency stirring. Indepen-
dent stirrer positions or independent frequencies provide un-
correlated fields in the cavity and thereby uncorrelated power
levels. The independence of samples is necessary to make a
statistical analysis of data and provides a better accuracy of
measured parameters. The autocorrelation function is gener-
ally used to estimate the independency of samples, supposing
that only linear correlation can affect measurements. This
paper focus on experimental results for estimating frequency
and mechanical stirring efficiency by a recent approach that
uses autocorrelation functions. Because uncorrelation does not
necessarily implies independence, the use of autocorrelation
function may lead to estimate an upper bound of the effective
sample size.
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I. INTRODUCTION

Reverberation chamber (RC) is an alternative tool for
various EMC [1], [2] and non-EMC applications [3]. Above
the lowest usable frequency (LUF), the electromagnetic field
in the test volume of a reverberation chamber is homo-
geneous and isotropic. Due to the stochastic-like nature
of the field, a measurement performed in a mode-stirred
chamber is a random value. For instance, the immunity test
of any electronic system in RC is a random experiment
[4]. Therefore, the control of a test carried out in the
cavity requires the quantification of the uncertainty over an
estimation. Statistical methods are of a great interest for RC
measurements analysis.

In RC, a mode stirrer is commonly used to change the
boundary conditions for the electromagnetic field. Correctly
selecting each location of the stirrer creates an independent
field distribution. Similarly, independent electromagnetic
environment can be provided by the electronic stirring
process. The uncertainty level over an estimation in RC
is directly related to the actual number of independent
measurements, which are collected by mechanical and/or
electronic stirring.

Received power measurements in RC can be viewed as
a time series process. For a given correlated time series of
length N , the information given by the N values is equal
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Figure 1. The IETR reverberation chamber.

to that given by an uncorrelated time series of length N ′,
where N ′ < N . N ′ is the effective sample size (ESS) the
RC user is looking for in order to evaluate correctly stirring
efficiency.

Usually, the number of independent samples is evaluated
using the autocorrelation function (ACF), which is strictly
a measurement of the linear correlation. Therefore, the RC
community does the common assumption that uncorrelated
samples are also independent. However, we should keep in
mind that uncorrelation does not necessarily imply indepen-
dence. Let X be a random value which follows a zero mean
normal distribution and Y = X2. The correlation coefficient
ρ(X, Y ) is null, although X and Y are highly dependent.
As a consequence, ACF leads to estimate only a maximum
number of independent samples, which are available among
all measurements.

The normative part of the IEC 61000-4-21 [2] assumes
statistically independent boundary conditions between two
successive stirrer positions when the estimated first order
ACF r is lower than 1/e ≈ 0.37. In (1), the series y is the
same collection of data as x but shifted by one sample. The
notations “covar” and “var” are for the covariance and the
variance operators, respectively.

r =
covar(x, y)√

var(x)
√

var(y)
(1)

Some authors have still pointed out that the criterion ρ0 =
0.37 is generally not well adapted since the distribution of
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the first order ACF is a function of the sample size N [5],
[6]. Therefore, we will not base our analysis on this single
criterion. In [6] we endeavoured to determine the correlation
coefficient under more satisfactory statistical conditions:
given N = 1500 samples, the estimated autocorrelation
function of the N size sample is evaluated with a 5%
uncertainty level.

This paper aims to highlight that using the ACF is a
convenient way to estimate an upper bound of the actual
number of independent samples. First, we briefly introduce
the method that leads to an estimate of this upper bound.
Second, experimental results are provided for both elec-
tronic and mechanical stirring.

II. ESTIMATION OF THE EFFECTIVE SAMPLE SIZE

The global formulation of an AR(k) model expresses the
observation t of the dependent value yt as a function of
the former observations yt−1, yt−2, . . . , yt−k and a residue
εt. This last is supposed independently and identically
distributed (IID).

yt = Φk1yt−1 + Φk2yt−2 + · · ·+ Φkkyt−k + εt (2)

The coefficients Φkl are easily calculated with a spreadsheet
like Excel using the regression tool. In the case of an AR(1),
we have the particular relationship Φ11 = r. Increasing the
order of an AR model is appropriate when there remains
significant information in the residue that is not exploited
yet. Therefore, the order k is deduced from a correlation
analysis over the residues εt. For a series of N = 1500
samples, when the absolute value of the estimated first order
ACF r is less than 0.10, we consider that the 1500 samples
are uncorrelated, and then assume independence [6]. Thus,
when the first order ACF |rε| of 1500 residues is lower than
0.10, then the residues are supposed independent.

The reader can find a detailed description of the calcula-
tion of the ESS of a N size sample in [6]. Only the useful
relationship is given here. The ESS N ′ is estimated from a
series of N dependent data, which are collected for instance
using N correlated stirrer steps over a complete rotation. Let
y1, . . . , yN be a sample of dependent data whose mean is
μy and variance is σ2

y . Among those N data, there are only
N ′ values which are actually independent. Let x1, . . . , xN ′

be the sample of those N ′ independent data whose mean
is μx and variance is σ2

x. The effective sample size N ′ is
calculated here using (3) for an AR(1) model.

N ′

AR(1) = N ×
1− Φ11

1 + Φ11
×

(
σx

μx

)2

×

(
μy

σy

)2

(3)

This method is valid when no correlation does imply
independence, since this analysis is based on autocorrelation
functions which can only evaluate a linear dependency. In
the general case for a N size sample, the relationship (3)
leads to an upper bound of the actual effective sample size.
When ρ = 0, then N ′

AR(1) = N ′ = N ; when |ρ| > 0,

then N ′

AR(1) > N ′. But, when we assume that only a
linear dependency can affect measurements, then N ′ is well
estimated from N ′

AR(1) (3).

The parameters μy, σy , Φ11, Φ21, and Φ22 are esti-
mated experimentally from the series of N dependent data.
The ratio σx/μx which is related to independent data is
theoretically known [7]. For independent received power
measurements, data follow an exponential distribution and
therefore σx/μx = 1. We previously checked that received
power measurements with a large log-periodic antenna
(ETS-Lindgren Model 3148: height 6.4 cm, width 85.6
cm, depth (length) 73.7 cm) fit correctly the exponential
distribution, using appropriate goodness-of-fit tests [8].

III. EXPERIMENTAL RESULTS

This section aims to provide experimental results in
order to evaluate the ability of the proposed method to
estimate correctly the effective sample size in the case of
RC measurements. The analysis is based on a comparison
with the results given by the central limit theorem (CLT).
All experiments are carried out in the IETR reverberation
chamber (Fig. 1) whose LUF is established around 250
MHz.

A. Central limit theorem

In the case of independent samples, the central limit
theorem is well known [9]. Let x1, . . . , xN ′ be an inde-
pendent sample of the random variable X whose mean is
μx and variance is σ2

x. When the number N ′ of independent
samples is sufficiently large (> 20), one can consider the
estimated mean value μ̂x as normally distributed with the
standard deviation

σμx
=

σx
√

N ′

· (4)

We point out that the normal distribution of the estimation
of a mean from N ′ observations enables to calculate a
confidence interval associated with the estimation. The
knowledge of this confidence interval leads to control
measurements performed in RC. In Fig. 2, we indicate for
instance the 95% confidence interval characterized by the
2.5% and 97.5% quantiles.

In order to assess if the correlation coefficient can be
sufficient to claim that the data are independent, we propose
to check the relationship (4), experimentally from received
power measurements in RC. The purpose is to have access,
with still a good precision, to the experimental standard
deviation of the mean of N measurements, with N varying
from 20 to 400 samples, generated either by frequency
stirring (ESS denoted N ′′) or by mechanical stirring (ESS
denoted N ′). For small N , the CLT is checked replacing N ′

by N in (4), whereas when N > N ′ for mechanical stirring
or N > N ′′ for frequency stirring, the standard deviation
should saturate at a level given by N ′ or N ′′, respectively.
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Figure 2. Confidence interval associated with the estimation of a normal
parameter from RC measurements.

Since 1500 estimated values of the mean of N samples
are necessary to estimate correctly (±5%) the standard
deviation of the experimental means, this experiment takes
a long time. Either for frequency stirring, or for mechanical
stirring, it takes approximately 180 hours. More details
about the experimental setup and the results are given below.

B. Frequency stirring

From 690 MHz to 710 MHz, we select 400 samples
with a constant frequency step, for one stirrer location and
one receiving antenna position. We previously estimated
(Fig. 4) that around 700 MHz, we have 50 uncorrelated
samples in a 10 MHz frequency bandwidth. Therefore, we
can assume that from 690 MHz to 710 MHz, there are
approximately 100 uncorrelated samples using frequency
stirring. Moreover, since we need 1500 estimations of
the mean of N samples, we replicate this setup for 15
independent receiving antenna positions, and 100 stirrer
locations over 360 ◦ per antenna position.

From each series of N data, we first estimate the mean
μN of the N size sample. For instance, with N = 20, we
select only one value out of twenty data; with N = 50, one
value out of eight, and so on. Then, from 1500 series we are
able to estimate precisely the expected standard deviation
σμN

. Here we call N ′′ the number of independent samples
available in the N = 400 size sample, i.e. in the frequency
range [690 MHz - 710 MHz].

Moreover, since in the case of received power measure-
ments the standard deviation to mean ratio of data is simply
1 [7], using (4) the number N ′′ can be found solving the
following equation:

σμN

μN

=
1

√
N ′′

· (5)

When N < N ′′, the CLT must be statisfied using N
instead of N ′′ on the right-hand side of (5). Then, when
N > N ′′, the CLT cannot be used with N since there are
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Figure 3. Estimation of N
′′ using the central limit theorem in the

frequency bandwidth [690 MHz - 710 MHz] (Frequency stirring).
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Figure 4. Evaluation of the numbers N
′ (mechanical sirring) and N

′′

(frequency stirring) of independent samples, using AR models. N
′ is the

estimated number of independent stirrer locations available over a complete
rotation. N

′′ is the estimated number of independent frequencies available
in a 10 MHz frequency bandwidth [6].

dependent samples in the N size sample. Consequently, the
number N ′′ must be considered on the right-hand side of
(5). The results for different values of N ′′ are compared
with the experimental standard deviation to mean ratio of
the estimated mean of the N size sample in Fig. 3.

As expected, the experimental standard deviation to mean
ratio decreases when N increases, up to the critical value
N = N ′′. When N > N ′′, the standard deviation cannot
decrease since we only add dependent samples in series
of measurements. The level of convergence of σμN

/μN is
obtained for large N and is 0.097. This level of convergence
gives access to the number of independent samples available
in the series of N = 400 measurements in the range
[690 MHz - 710 MHz]. Using (5), we deduce N ′′ = 106
independent samples. In Fig. 3, one can clearly see, thanks
to the precision of the estimation of the standard devia-
tion to mean ratio, that higher values of N ′′ or smaller
values do not let to fit correctly the experiment. The value
N ′′ = 106 is consistent with the number of uncorrelated
samples estimated from (3) using autoregressive models in
[695 MHz - 705 MHz] (Fig. 4). Therefore, for frequency
stirring, the first order ACF seems to be sufficient to test
the independence of measurements.
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Figure 5. Estimation of N
′ using the central limit theorem, over a

complete rotation of the mode stirrer and at 700 MHz (Mechanical stirring).

C. Mechanical stirring

Using the central limit theorem, we propose to determine
the number N ′ of independent samples available over
a complete rotation (360 ◦) of the mode stirrer at 700
MHz. Consequently, we transpose the previous analysis for
frequency stirring, in the case of mechanical stirring. We
select N = 400 locations of the mode stirrer over 360 ◦.
In order to get 1500 series of N = 400 samples, we also
use 15 independent positions of the receiving antenna and
100 independent frequencies in the range [690 MHz - 710
MHz].

Here we call N ′ the number of independent samples
given by the central limit theorem, among the N = 400
locations of the mode-stirrer. From (3), we estimated using
autoregressive models that, at 700 MHz, there are 130
uncorrelated positions of the mode stirrer over 360 ◦ (Fig.
4). However, using the CLT we calculate that there are
only 80 independent boundary conditions available with the
mode stirrer over a complete rotation (Fig. 5). This leads to
a significant shift in comparison with results for frequency
stirring (Table I). Moreover, considering N ′ = 130 instead
of N ′ = 80 corresponds with a significant shift of the
standard deviation to mean ratio (Fig. 5). Therefore, for
mechanical stirring, having uncorrelated samples may not
necessarily imply that these samples are strictly indepen-
dent.

TABLE I. ESTIMATION OF N
′ AND N

′′ : AR MODEL1 VS. CLT2

N
′ over 360 ◦

N
′′ in

at 700 MHz [690 MHz-710 MHz]

AR model (3) 130 100

CLT (4) 80 106
1which estimates the number of uncorrelated samples.
2which estimates the number of independent samples.

A possible cause of such a behavior is here proposed. In
the mechanical stirring case, when the stirrer is moving, we
cannot predict that it is equivalent to reduce the electrical
volume of the cavity or increase it in comparison with
the wavelength λ. The variation of this electrical volume

is not monotonic, so dependency between subdivisions is
possible. For frequency stirring, starting from a minimum to
a maximum frequency is equivalent to reduce the electrical
volume of the cavity with regards to λ. Therefore the
evolution of the electrical volume is monotonic, and if
frequencies are not correlated we may assume that there
is also no dependency.

IV. CONCLUSION

The paper points out that having uncorrelated samples
in a reverberation chamber does not necessarily imply that
those samples are completely independent. For frequency
stirring case, no linear correlation between samples enables
to conclude independency. But, for mechanical stirring
process, the evaluation of ESS leads only to an upper
bound of the actual number of independent samples. The
knowledge of N ′

AR(1) leads nonetheless to a maximum
confidence interval of a parameter estimated in RC.
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