EMC’09/Kyoto

24R1-2

Accounting for Uncertainty in EMC Studies

Leonardo R.A.X. De Menezes™, Dave P. Thomas™, Christos Christopoulos™

#1Dep. de Eng. Elétrica, Fac. de Tecnologia, Univ. de Brasilia, Brasilia-DF 70910-900 Brazil; #ZGeorge Green Institute for
Electromagnetics Research, Univ. of Nottingham, Nottingham NG7 2RD, U.K

Yleonardo@ene.unb.br
2Dave. Thomas@nottingham.ac.uk
3Christos.Christopoulos@nottingham.ac.uk

Abstract— The paper addresses the use of statistical techniques
in the assessment of the impact of parameter uncertainties on
important EMC parameters such as shielding effectiveness

Key words: Statistical techniques, EMC, Shielding, Unscented
Transform.

I. INTRODUCTION

Uncertainty is one of the most challenging aspects of EMC
analysis. Frequently, the EMC compliance of a complex
system is required when the layout and many component
parameters are only known to certain accuracy or may vary in
a random fashion. Therefore, many EMC parameters such as
coupling, radiation and immunity can only be defined within
statistical limits. Calculating these statistical parameters for
EMC in complex systems directly is very time consuming
and often impossible. Solving complex systems using a
Monte Carlo approach is not feasible as it uses several
hundred thousand simulations to obtain the statistics of the
final result. For complex systems where each simulation may
require hours this is not a practical method. Unscented
Transforms (UT) offer a method of greatly reducing the
computational burden needed during statistical analysis. The
paper describes the basis of the UT approach and gives
examples of its application in shielding effectiveness
problems.

Il. THEORY

A. The Unscented Transform (UT)

The UT was developed by Julier and Uhlman in 1997 [1]
and it is similar to the Moment Design Technique (MDT) [2].
Both techniques use the moments of the probability
distribution function to determine a selected set of points. In
MDT, these points are called design values. In the UT
approach they are the sigma points S;.

The main idea of the UT is to approximate the effect of an
arbitrary nonlinear mapping by the mapping of the set of
sigma points. Once the mapping is completed, the statistical
moments are available through a weighted average of the
mapped values at the sigma points.

B. Calculation of the Sigma Points
Let 0 be a zero mean random variable with known

probability distribution, and U s the average value of the
quantity being mapped. Both are subjected to a continuous
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nonlinear mapping G(U+l3). The mapping may be expressed
using the Taylor polynomial expansion:

— — dG . 1d°G ., 1d°G
G0 +4)=60)+—a+= u2+§du3

3
du 2 du? e @
The formulation representing the Taylor series (2) as a
polynomial is more compact, therefore it will be used from
this point on.

G(LT+G)=G(U)+ p(d) )
The expected value of (2) is:
G =ElolU +a)=El6U) + Elp(a)}=60)+P @

In Equation (3) P is the expected value of the Taylor
polynomial. The variance of (2) is:

o2 =e{c(U +1)-GT |- E{pa) }-P* @
The Taylor representation is also usable for the sigma

points.

G(U +Si): G(U )+ p(s;) (5)
The polynomial is the same because the sigma points S;

belong to the probability distribution of (. The comparison of

the expected value and variance of (5) with (3) and (4) results

in the set of equations for the sigma points.

w, :1—ZWi
> ws! =El*] ©)

The order of approximation is k, depends on how one
truncates the polynomial. Therefore, the truncation of the
Taylor polynomial determines the number and value of the
sigma points S; as well as the weights w; of the UT.

The set of equations for the sigma points (6) is nonlinear.
Therefore, there is a number of possible choices for sigma
points satisfying the equation system. However, there is a set
of solutions that are roots to the polynomials of the Gaussian
quadrature integration scheme [3]. This simplifies the solution
of (6), since the weights w; and sigma points S; are more easily
calculated from the quadrature integration scheme. Naturally,
the interpolation polynomial is dependent on the probability
distribution of 0 (equivalent to the weight function w() of the
integration). Table | presents the normalized sigma points.
The normalization factor is the standard deviation in the
Gaussian distribution case. In the case of the uniform
distribution, the normalization factor is the interval of the
distribution [-1,1]. and weights for the uniform and gaussian
distributions.
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TABLE |

SIGMA POINTS AND WEIGHTS FOR UNIFORM AND NORMAL DISTRIBUTIONS

Order Normalized Sigma Points and Weights

Weights Sigma Points Probability
Distribution

1 0.500 0.500 -0.577 0.577 1,

2 0.2780.4440.278 | -0.77500.775 | wd)=12 9/ <1

4 0.1190.2390.284 | -0.906 -0.538 0 0 Jo>1
0.2390.119 0.538 0.906

1 0.500 0.500 11 1

2 0.167 0.666 0.167 | -1.730 1.73 W(ﬁ)=fe 2

4 0.0110.222 0.534 | -2.857 -1.356 0 i
0.222 0.011 1.356 2.857

C. Calculation of the moments of the mapped distribution

Once the sigma points are known, it is straightforward to
apply them to the nonlinear mapping. The statistical moments
are calculated using:

E{G(LT+G)"}=ZWiG(lT+Si)" %

The central moments are calculated using the expected
value of the result (calculated using (7) with n=1). The general
expression is:

Efe@ +u)-GTj=Y wle@+s,)-G7 8)

The calculation of the resulting statistical moments is
linked with the nonlinear function. This function may have
analytical or numerical form. If an analytical equation is
available, the denormalized values of the sigma points are to
be used in the calculation. As an example, one may use the
UT to calculate the first resonant frequency of a cavity filled
with a dielectric which has the permittivity as a random
variable. Since all other parameters are fixed, the nonlinear
mapping function is:

o o
Gl +l)- =5 ©

Where f, is the resonant frequency of an empty filled cavity
with the same dimensions, ¢ is the mean value of the
permittivity, and 0 is a zero mean random variable. The
distribution of the random variable determines the weigths and
sigma points. As discussed in the previous section, the
denormalization factor depends in the type of distribution. In
the case of the uniform distribution , the variable will be
denormalized by the size of the interval. In the case of the
normal distribution, the denormalization factor is the standard
deviation. The nonlinear function (9) is calculated for each
sigma point and the moments are obtained using (7) and (8).

If the nonlinear function is numerical, such as resulting
from a numerical simulation, then the same process has to be
repeated for each sigma point.

D. Accuracy of the Unscented Transform

The accuracy of the UT is dependent on the order of the
approximation as presented on Table I. If the sigma points are
obtained from the quadrature scheme, then the accuracy will
be the same of the chosen interpolation polynomial. As an
example, one can compare the expected value and central
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moments if an exact calculation is possible. This is the case of
the nonlinear mapping shown in (9). In the example the
cavity is tuned to fy is 300 MHz, and it is filled with a
dielectric with mean permittivity of 4.

The random variable may have a uniform or gaussian
distribution. In this example, the relative permittivity was
modeled as a random variable that could vary between 3 and
5. This translates to an interval of [4-1,4+1] in the case of the
uniform distribution. In the case of the gaussian distribution
this results in a standard deviation of 1/3 (considering 99%
confidence interval). Therefore, the sigma points are:

o For the uniform distribution (3 sigma points)

G(4—0.775):&:167.054
4-0.775
300
G(4)="==150
“-7 (10)
G(4+0.775):L:137.289
4+0.775

Therefore the expected value, calculated with (7) is
151.206 MHz
e For the Gaussian distribution (2 sigma points)

1 1
6[4—5)—156.670 G[4+§j—l44.115 (11)

Using (7) shows that the calculated expected value is
150.393 MHz. Table Il shows the comparison of the UT
calculations with exact analytical results. In this table, the
moments are calculated using 2, 3 and 5 sigma points (as
presented in Table I).

TABLE Il

COMPARISON OF DIFFERENT MOMENTS OF TWO DISTRIBUTIONS FOR VARIOUS
APPROXIMATION ORDERS AND THE EXACT RESULTS

Type of Type of distribution
moment Uniform | Uniform Normal Normal
(UT) (Exact) (um (Exact)
Expected 151.189 151.205 150.393 150.397
Value 151.206 150.398
(MHz) 151.205 150.400
Standard 10.962 11.143 6.277 6.360
Deviation 11.143 6.364
(MHz) 11.144 6.360
Skewness 0.000 0.266 0.000 0.390
0.257 0.371
0.266 0.388
Kurtosis -2 -1.109 -2.000 0.322
-1.190 0.040
-1.109 0.320

E. The Multivariate Unscented Transform

The multiple random variables case is also modeled by the
UT . It is possible to include either independent or correlated
variables. Although the approach allows modeling correlated
variables, it is best to calculate the sigma points for
independent random variables. Once these points are known,
further processing is a matter of linear transformation using a
covariance matrix.

In multivariate cases, the choice of sigma points and
weights is not unique, and it is usually necessary to use

754




EMC’09/Kyoto

additional sigma points [4]. There are many possible sets that
may be used. One set that is simple to calculate is the
combination of sigma points provided by the appropriate
quadrature scheme. In this set, the weights are calculated by
the product of individual weights of each random variable.

In most multivariate problems, there may be dominance of
a set of random variables over the others. This may be
ascertained by a careful analysis of the moments of the
marginal distributions (one input random variable at a time) or
by the analysis of the correlation between input and output
variables.

F. Estimation of Variable Influence in the Multivariate Case

A numerical problem with several random variables may be
well characterized by a smaller subset of variables. Using the
concept of marginal distribution probability function [5], it is
possible to determine what are the most important variables.
These distributions are essentially one-variable distributions,
where the calculation is performed for each variable
separately using (8). The resulting expected value and
variance provide information on the significance of each of
the variables. Since the UT is based on a Taylor
approximation of the nonlinear mapping, the calculation of the
marginal statistical moments provide a good estimate of the
influence of each parameter in the output result:

— E{G(Un)z}_E{G(Un)}Z
" El6(@,..U,)*}-EG(0,...T,)f
Where Iy, is the relative percentage influence of variable
U, in the variance of the result.

(12)

G. Calculation of the Probability Density Function

In addition to the calculation of the statistical moments of
the solution, the UT can be used to obtain the probability
density function (PDF) of the solution. This may be very
useful since one may use the PDF to calculate the confidence
intervals of the solution.

The UT is based on a polynomial approximation for an
arbitrary mapping. This allows a simple form of calculation of
the probability density function. The Jacobian approach to
calculating a mapped distribution function requires the inverse
function of the mapping. Since the UT uses a polynomial to
approximate the mapping, the problem is reduced to a root
finding procedure. The case of the second order
approximation has a closed form representation for the
Gaussian probability density function (PDF). The results of

the  mappin are three pointsG(Y—x@G), G(Y)
andG (X + \/50();. The coefficients of the polynomial are shown
in (12).
2,=G[X)

_ 1 5K 30 )—cx -
A=y [6(X ++30)-6(X 30| .

3, :%[G(Y +30)-26(X }+ G(X o

The resulting probability density distribution is
calculated by (13).
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\1{17%« a 42,20 +48,G T \1{17@7 a7 ~4a,a,+42,G T
22 a 22 a
1 e
p(G)=—= .
©) Vor \/af —4a,a, +4a,G \/af -4a,a,+4a,G (14)

The procedure described in (13) and (14) is well suited for
problems with one random variable. However, the calculation
of the PDF for the multivariate case is also possible. In such
case, the algorithm for determination of the output PDF is
summarized as follows :

a) Calculate mapped denormalized sigma points;

b) Using the Moore-Penrose pseudo-inverse, calculate the
coefficients of the second order polynomial;

c) Generate the total probability density for all random
variables using the polynomial calculated in (b);

d) Integrate the total probability density with respect to all
variables resulting in a univariate cumulative density function
(CDF) of the solution;

e) Differentiate the CDF to obtain the PDF of the solution.

H. Application of the UT to Electromagnetic Compatibility

The application of the Unscented Transform in EMC is
very similar to the use of Monte Carlo (MC) method in such
problems. The main advantage of the UT is that the result is
calculated with far less computational effort and time
compared to MC. Therefore, the UT can model EMC
simulations containing different sources of uncertainties as
well as different associated probability distributions. It may
model position, electrical parameter or manufacturing
uncertainties.

This work presents the modeling of uncertainties associated
with the shielding effectiveness of cabinets. The UT is used to
model uncertainties effects due to the position of the sampled
field, and the size and position of the aperture.

I11. RESULTS

The problem consists of the statistical characterization of
the shielding effectiveness (SE) of a metallic box with an
aperture shown in Fig. 1. The box had dimensions (x,y,z) 30 x
12 x 30 cm. The aperture was in the z=0 plane with
dimensions (x,y) 10 x 4 cm. The field was sampled in the
middle of the box (z=15 cm).

10
12
4
Z

l L
X

Fig. 1 Metallic box with an aperture

In this problem the random variables were the dimensions
of the aperture. The set of sigma points were (10,4), (10,6),
(10,2), (12,4), (8,4), (12,6), (12,2), (8,6), and (8,2). The
distribution was assumed to be normal.
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A. Shielding effectiveness of cabinet with size of the aperture
as random variable.

The calculation of the SE was performed with the Mefisto
TLM simulator for 400000 timesteps. The discretization was
uniform with a spatial size of 1cm. Fig.2 shows the expected
value of the Shielding Effectiveness and one standard
deviation interval.

Shielding Effectiveness (SE) of Cabinet with Aperture
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Fig. 2 Average Shielding Effectiveness with one standard deviation margin.

B. Influence of width and height of the aperture

The influence of each parameter of the aperture is shown in
Fig,3. The calculation of the influences using (12) shows that
the width (x dimension) is the dominant effect at higher
frequencies, although the effect of height (y dimension)
cannot be neglected in the lower range. The oscillations in the
response are caused by the truncation of the time-domain
response.

Influence of Width and Height of Aperture in Variance
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Fig. 3 Influence of aperture dimensions in the variance of the calculated
response.
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C. Probability Density Function of Minimum SE

The Probability Density (PDF) and Cumulative Probability
(CDF) functions shown in Fig.4 were calculated with the steps
discussed in section 11.G. The cumulative probability function
shows that the probability of obtaining a shielding effectivess
of less than -16 dB is about 1.5%. The CDF also shows that
95% of the results will be between -20.76dB and -17 dB.

Probability Density Function (PDF) and Cumulative Probability Function (CDF)

1 s
oo MW

o7 L
]

0.6
05 A — Probability Density
' f \ —+— Cumulative Probability

Probability

0.4 /

0.3 f
0.2 f
0.1 ‘ﬁ
0

22 -20 -18 -16 -14
Minimum Shielding Effectiveness (dB)

Fig. 4 Probability Functions — PDF and CDF of the minimum shielding
effectiveness given the aperture variation.

IV.CONCLUSION

The application of the UT technique in establishing the
uncertainty in outputs due to uncertain input parameters was
described. It was shown that the moments of the statistical
distribution as well as the pdf may be obtained from a small
number of simulations which are weighted appropriately. Both
the single and multivariate cases were discussed. The
accuracy of the UT was presented for the higher order
statistical moment calculation. Examples were shown for the
shielding effectiveness of cabinets with uncertain slot
parameters.
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