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Abstract— A statistical model for the prediction of radiated 
susceptibility (RS) of unshielded twisted wire pairs (TWPs) 
running above ground, and illuminated by a random field in a 
complex electromagnetic environment, is presented. The incident 
field is modelled as a superposition of plane waves with random 
amplitude, phase, and polarization. The expected value of the 
average power of RS noise at terminal loads is derived in closed 
form, as well as the probability density function of the induced 
voltage. 
Keywords: Statistical EMC models, radiated susceptibility, 
twisted wire pairs, Field-to-Wire Coupling. 

I. INTRODUCTION 
Radiated susceptibility (RS) is a typical EMC phenomenon 

that cannot be exhaustively predicted and analyzed by 
resorting to deterministic models. As a matter of fact, the lack 
of information about the source of interference 
(electromagnetic field with partially/totally unknown 
characteristics), and the victim device (uncertainty of 
geometrical and electric data) can be successfully overcome 
only with the introduction of statistical approaches [1]. 

A promising application is the prediction of RS of cables 
and wiring harness illuminated by an electromagnetic field 
described by random parameters [1]. As an example, in [2] a 
statistical model for the RS of an electrically-short two-
conductor transmission line (TL) exposed to a single random 
plane-wave field is proposed. This result is extended in [3] by 
considering an incident field composed of a superposition 
(continuous or discrete) of random waves. In [4], an RS model 
for electrically-long two-conductor TLs excited by a 
Rayleigh-channel field is investigated.  

In order to be relevant for EMC, such prediction models 
should be extended to treat wiring structures of practical 
interest. In line with this aim, this work focuses on unshielded 
twisted-wire pairs (TWPs), which are among the more diffuse 
interconnects used in today’s communication cable 
technology. While deterministic models for RS of TWPs are 
available in the literature [5]-[9], statistical models are still 
unexplored.  

In this work, the general approach reported in [3] is applied 
to a TWP running above ground, and illuminated by an 
incident field resulting from the superposition of infinite 
plane-waves (that is, a plane-wave integral) with random 
amplitude, phase, and polarization [10].  

The proposed model allows for the derivation in closed 
form of (a) the expected value of the average power of RS 
noise at terminal loads; (b) the probability density function 
(pdf) of the magnitude of the voltage induced at terminations. 

II. STRUCTURE UNDER ANALYSIS 
The structure under analysis is sketched in Fig. 1 and is 

composed of a TWP running at height h  above a perfectly-
conducting ground plane. The TWP is composed of two 
lossless bare conductor with radius wr  and separation s , 
which are wound into a bifilar helix of pitch sp  [5], [6].  

The total distance the TWP extends along the z-axis is zL  
(see Fig. 1), which is related to the wires’ length zLL  by 
the relationship: 
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is the helix rotation parameter [5], [8]. 
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Fig. 1  TWP running above a ground plane 
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The terminations are connected to perfectly-balanced 
devices (modeled with resistors SR  and RR ). As shown in Fig. 
2, such loads can be floating, or grounded with arbitrary 
impedances (or a combination floating-grounded). 

The TWP is illuminated by an incident electromagnetic 
field resulting from the superposition of uniform plane waves. 
Each impinging wave is characterized by an electric-field 

jeEE 0  (where 0E  is the field strength,  is the phase), 
incidence angles , , and polarization angle  [see Fig. 
1(a)]. 

III. DETERMINISTIC MODEL 
Under the limitation 10/h  (  being the wavelength), 

the TWP terminal response to a single plane-wave with 
known parameters can be expressed in closed form by 
applying a field-to-wire coupling model based on TL theory 
[11], [5], [8], [9]. Care has been taken in modeling not only 
the TWP, but also the so-called differential risers (DRs), i.e., 
the short wire segments connecting terminal loads to the wire 
pair. By doing so, an expression of the differential mode (DM) 
voltage induced at the left (L) and right (R) terminations (see 
Fig. 2) is obtained in the form: 
 
 ),,,,,,,( 0 RL

L
R

L
R RREjV  (3) 

 
For the sake of conciseness, and since this work is mainly 

devoted to statistical analysis, the explicit expression of (3) 
(which is very complex) is not reported here. 

By exploiting (3), an approximate upper bound (UB) to the 
magnitude of DM voltages can be derived under the following 
simplifying assumptions: 
(a) According to the common practice, terminal loads are 

matched, i.e., CRS ZRR  where CZ  is the DM 
characteristic impedance of the TWP. 

(b) resf2 , where )sincos2/(0 pcfres  is a 
resonance frequency which depends on twisting 
parameters,  is the angular frequency,  0c  is the light 
velocity. This is not a real limitation, because resf  exceeds 
even the limit of validity of the TL model ( 10/h ) for 
typical values of twisting parameters. 

(c) The TWPs is composed of 4/1N  twists, i.e., an 
arbitrary integer number N  of twists, plus a quarter of 
residual twist. One can demonstrate that this hypothesis is 

in line with a worst-case EMC analysis (that is, it leads to 
a maximized TWP response). 

By virtue of these assumptions, an UB to the DM voltage 
induced at the left (L) and right (R) terminations can be cast as: 
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where  
 sincosxe  (5) 
 sinsincoscoscosym  (6) 
 cossincossincoszm  (7) 
 

In (3), the different terms due to the TWP and the DR 
contributions have been highlighted. One can demonstrate that 
(3) is an exact expression in case of electrically-short TWPs 
(i.e., for 1/zL ), whereas it represents an approximate 
UB for electrically-long lines (with an error of 
underestimation which is typically less than 5 dB). 

As an example, the DM current induced in the left 
termination [derived from expression (3), solid line] and the 
UB [derived from expression (4), dashed line] are plotted in 
Fig. 3. The structure is characterized by 

cm 5ph , mm 4s , mm5.0wr , m 0125,2zL , 

40N , V/m 10E , o45 . Additionally, the full-
wave solution of a commercial software tool based on the 
method of moments (MoM) is plotted in Fig. 3 for comparison 
and validation (solid line with circular markers) [12]. In the 
MoM code, each TWP wire has been finely represented as a 
helix composed of 1003 straight-wire segments (2006 total 
segments). It is worth mentioning that evaluation of a single 
frequency point via MoM requires meanly 1 minute on a 
Pentium IV - 1.6 GHz PC equipped with 1 GB RAM, whereas 
a few seconds suffice for thousands of frequency points by 
exploiting the computationally-efficient TL model. 

Fig. 2  Balanced terminal loads 
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Fig. 3  Current induced in the left TWP termination 
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IV. STATISTICAL MODEL 

A. Plane-Wave Integral Representation of Fields 
Let us suppose that the TWP is illuminated by a complex 

field resulting from the superposition of infinite impinging 
plane waves of infinitesimal amplitude, whose incidence 
angles describe any possible direction in the upper half space 
( 2/0 , 20 ). In the following, the shorthand 

 will be used to denote the incidence angles ( , ). 
Namely, the infinitesimal field amplitude can be written as 

ddE )(0 , where )(  is the plane wave angular 
density, and ddd sin  is the elemental solid angle. 
Also, we can introduce both the field phase )(  and the 
polarization angle )(  as functions of  [3], [10]. 

In order to model a random field, quantities )( , )(  
and )(  are treated as uncorrelated random variables (RVs) 
in the space  [13]. In particular, the following statistical 
properties are postulated: 

 
 )()()( 2121 D  (8) 

 0sincossincos  (9) 

 2/1sincossincos 2222   (10) 

 
where symbol  is used to denote the expectation operator 
and )(  is the Dirac distribution. Eq. (8) defines the 
autocorrelation function of )( , corresponding to the 
autocorrelation of a white stationary random process 
characterized by a so-called “average intensity” D  which is 
independent of , i.e., all the waves have equal energy 
regardless of the incoming direction [3], [13]. As an example, 
in ideal reverberation chambers, one has )4/(2

0ED , 

where 2
0E  is the electric field mean square value. 

Concerning (9)-(10), these expressions are satisfied (as a 
specific example) if ,  are independent and uniformly-
distributed random variables ranging in the interval ]2,0[ . 

B. Statistical Characterization 
   By exploiting the approximate UB in (4) and the random 
plane-wave integral representation of fields, the integral 
representation of the induced voltage can be cast as 
 

 dBA
c
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where 
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are deterministic functions of . Note that in (13), the 
integration is extended over the upper half space ( 2  solid 
angle).  
   By following the approach reported in [3], one can easily 
show that || XV , LRX , , behaves as a Rayleigh-distributed 
RV whose pdf is  
 

 2

2

2 2
||exp|||)(| XX

XV
VVVf

X
 (14) 

where 
 2|| 22

XV  (15) 

 
By virtue of (8)-(11), the mean square voltages in (15) can 

be cast as 
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Evaluation of (16) in closed-form yields: 
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Consequently, the expected value of the average power due 

to RS noise at loads is: 
 
 CLCRav ZVZVP 22 ||||  (18) 

C. Model Validation 
The normalized histogram of  || RV , obtained by processing 

104 repeated-runs [3], and the analytical Rayleigh pdf in (14) 
are compared in Fig. 4(a) (at 60 MHz) and Fig. 4(b) (at 300 
MHz). These simulations refer to a structure characterized by: 

cm 2h , cm 1p , mm 1s , mm25.0wr , 22/mV 1D , 
40N , m 0125.2zL . 

It is worth recalling that analytical expressions (14)-(18) 
derive from the simplified UB given in (4), whereas numerical 
simulations exploit the complete TL model in (3). As 
mentioned above, the UB underestimates the real RS level for 
electrically-long lines. Notwithstanding this, a good 
agreement was found between the proposed statistical model 
and repeated-run analysis. 

V. DISCUSSION AND CONCLUSION 
The expected value of the average power avP  dissipated in 

terminal loads has been derived in (17)-(18). Concerning this 
parameter, one can observe that: (a) it provides a concise 
description of RS noise in statistical terms; (b) it increases 
with the square of frequency; (c) it does not depend on the 
TWP length and height above ground; (d) it depends on the 
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twist pitch p and the wires’ separation s. The latter aspect is 
exemplified in Fig. 5, where avP  is plotted versus p for 

different values of s, and for MHz600f , 22
rms m/V 1D , 

mm 25.0wr . Given that, in practical applications, the 
separation is a fixed parameter (determined by the diameter of 
the wire insulation and the desired characteristic impedance), 
reduction of the twist pitch is the sole expedient that the 
installer may adopt to reduce RS noise. Fig. 5 shows that the 
expected average power decreases up to 20-30 dB passing 
from cm 15p to cm 5.0p . 

The proposed model has been developed with reference to a 
plane-wave integral extended to the whole space. However, 
the derivation can be easily extended to treat either a 
continuous or discrete wave superposition (i.e., an integral or 
a sum of plane waves) illuminating the line from a specific 
element of the solid angle [3], allowing for better modeling of 
different electromagnetic environments. 

To conclude, one can note that a number of simplifying 
assumptions should be removed in order to extend the 
applicability of results. For instance, losses and dielectric 
insulation are not accounted for, as well as the effect of 

possible unbalance of terminal loads, which gives rise to 
conversion between common and differential mode [7]. These 
issues represent hints for future works.  
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Fig.4  Normalized histogram and pdf of the voltage induced in the right 
load 

0 5 10 15
-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

p, cm

<P
av

>,
 d

B
m

f = 600 MHz

D  = 1 Vrms
2 /m2

s = 1 mm
s = 0.5 mm

s = 3 mm

s = 2 mm

Fig. 5  Expected value of the average power due to RS noise as a function 
of the twist pitch p and wires’ separation s. 
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