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Abstract—We describe the use of numerical Green’s functions
applied to Radio Frequency Tomography. RF Tomography relies
on a linear operator in matrix form, which depends on a Green’s
function. The availability of the correct Green’s function can be
an important limitation when imaging in non-trivial scenarios. If
the function cannot be found analytically, numerical methods can
be used efficiently. We present simulation results that show the
benefit of using a numerical Green’s function by comparing it
to the result that would be obtained with the analytical function
for the homogeneous space.

I. INTRODUCTION

Radio Frequency Tomography is an imaging technology first
proposed for underground applications by Wicks [?] and later
on described in [?], [?] and [?]. This technique is based on
multiple, inexpensive, distributed sensors used to reconstruct
the contrast dielectric permittivity distribution of the volume
under investigation. The goal of RF Tomography is to detect
the presence of a target, which could be a tunnel in the case
of underground investigations. This technique was conceived
to produce images when monochromatic signals are used,
therefore an extremely narrow-band electrically small antenna
should be employed in Radio Frequency Tomography.

Free space scenarios have been experimentally validated in
[?], [?], [?] and [?]. Underground scenarios have been tested
mostly by means of computer simulations [?]. The theoretical
model for the underground scenario assumes that the ground
is a uniform material, so that the overall geometry can be
modeled as a half-space, with a perfectly flat interface be-
tween two homogeneous and infinitely extended spaces. This
assumption allows to compute the analytic Green’s function
needed to obtain images.

Despite the good simulation results achieved, it is clear
that for an actual implementation of RF Tomography less
simplified scenarios must be accounted for. One improvement
of RF Tomography to include more realistic scenarios is the
investigation of the effects of irregular surfaces, which was
investigated in [?].

In this paper, we focus on another improvement of RF
Tomography where we develop numerical Green’s functions
to account for more complex scenarios for which Green’s
function are not available.

II. METHOD

In RF Tomography, the forward model for the scattered field
ES, based on the Born approximation, is

ES(t, r) = Qk20

∫

D

[arm ·G(r, r′)] · [G(r′, t) · atn]εδ(r′)dr′,

(1)

where εδ is the unknown dielectric permittivity, arm and atn
are unit vectors representing the direction of polarization of
the ideal short dipoles corresponding to the receivers and
transmitters, respectively, and Q = −jωµ0∆ltIt for an ideal
short dipole. Using the appropriate dyadic Green’s functions
G(r, r′) and G(r′, t) is critical to obtain successful image
reconstructions. Analytic Green’s functions for simple scenar-
ios, such as homogeneous and half-spaces, are available and
widely used [?]. However, in many cases the Green’s func-
tion for complicated scenarios cannot be found analytically.
Therefore, we show that the Green’s function for more general
scenarios can be found numerically. Specifically, the numerical
Green’s function is the total electric field due to ideal dipoles
that radiate within an arbitrary background.

Et
(
r, rt

)
= QG

(
r, rt

)
a. (2)

The total electric field of equation (??) is equivalent to
a column of the dyadic Green’s function, where Qa is a
fundamental vector. By means of computer simulations, it is
possible to compute Et for virtually any scenario. Then, the
Green’s function is readily obtained.

The key step is to be able to efficiently model in the
simulator everything that is not considered target. In the
underground case, geological knowledge of the area under
investigation can provide information regarding the presence
of layered formations, large boulders, vein of minerals, or even
known underground structures. All the information that can
be acquired can become part of the Green’s function. Upon
collection of scattered field measurement from the antennas,
only information related to the target (i.e. unknown, not
included in the Green’s function) will appear in the final
image.
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Then, equation (??) is expressed in matrix form by dis-
cretizing the space of interest

Es = LV. (3)

Since the matrix L is usually ill-conditioned, the unknown
contrast permittivity vector V must be found using a regular-
ization technique. In this paper, the Algebraic Reconstruction
Technique (which is based on the row action iterative method)
is used [?].

III. TEST CONDITIONS AND RESULTS

To demonstrate our method, we consider a geometry for
which an analytical Green’s function is not available, shown in
Fig. ??. This geometry consists of a T-shaped duct, represented
using brown color and made of dielectric material with εr = 4
(similar to the one of dry soil), within which a small metallic
target, represented in red, is located. The goal is to develop
a numerical Green’s function that accounts for the shape
of the duct to detect the presence of the target, when the
volume containing the duct is surrounded by the transmitter
and receiver antennas. We tested the technique by using

Fig. 1: Problem Geometry: the duct is brown and the PEC
target is red.

the commercial simulation software FEKO, which computes
both scattered field and numerical Green’s function with the
Method of Moments. The test conditions involve a single
operating frequency of 3.16 GHz, 16 transmitters (modeled
as infinitesimal ideal dipoles), and 24 receivers, which are
virtually placed by evaluating the scattered field ES at those
points.

The cubic PEC target has dimensions 1 cm×1 cm×1 cm.
The duct is composed of two parallelepipedal parts, both
having the same cross section 2 cm high and 2 cm wide.
Using the reference system indicated in the figure, one vertex
of one of the parallelepipeds is located at (-5 cm, -10 cm)
and the opposite vertex is located at (-5 cm, 10 cm); the other
parallelepiped bisects the first one so that one of its vertices
is at (-4 cm, 6 cm) and the other is at (10 cm, 6 cm) in xy-
plane. The antennas are all located in the same plane, which
is positioned 6 cm above the plane of the duct. The top view
of the geometry and location of the antennas is shown in Fig
??.

Fig. 2: Problem geometry: the duct and target are at center,
the outer blue diamonds are the transmitters, and the inner red
circles are the receiver locations.

We tested three cases: PEC target located at (-5 cm, -
5 cm),(-5 cm, 6 cm) and (0 cm, 6 cm).

The scattered field is computed with the method of back-
ground subtraction. First, the total electric field with duct and
the PEC target is computed. Then, the total field without the
PEC target is computed. Finally, the scattered field of PEC
target is found by subtracting two cases.

Figs. ??, ??, ?? show reconstructed images using the free
space homogeneous Green’s function, which does not account
for the presence of the duct. Images based on the numerically
computed Green’s function are shown in Figs. ??, ??, ??.

When using the homogeneous Green’s function, the PEC
target appears at an accurate position. The duct does not appear
because of background subtraction. Images using numerical
Green’s function (with the duct) have better contrast and
less noise as compared to the previous case. More accurate
background information is involved in the imaging process,
resulting in a much better resolved image.

IV. CONCLUSION

In this paper, a method to numerically compute and employ
Green’s functions is presented. The simulation results demon-
strates how to improve models and reconstructed images if
obstacles not considered as part of the target are included
as background and used to numerically estimate the Green’s
function.
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(a) Case 1: homogeneous Green’s function with PEC target
centered at (-5,5) cm.
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(b) Case 1: numerical Green’s function with PEC target
centered at (-5,5) cm.
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(c) Case 2: homogeneous Green’s function with PEC target
centered at (-5,6) cm.
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(d) Case 2: numerical Green’s function with PEC target
centered at (-5,6) cm.
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(e) Case 3: homogeneous Green’s function with PEC target
centered at (0,6) cm.
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(f) Case 3: numerical Green’s function with PEC target
centered at (0,6) cm.

Fig. 3: Numerical results.
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