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Abstract—The Geometric Algebra (GA) for Minkowski space-
time and Maxwell’s equations in the setting of GA are briefly
outlined. The constitutive equations are discussed in more detail.
A discrete version of GA for a Cartesian grid is investigated
and is shown to be equivalent to Tonti’s approach. Furthermore,
under quite natural assumptions both schemes coincide with the
Finite Integration Technique (in 3D space) and Leap-Frog time
integration.

I. INTRODUCTION

The concept of Geometric Algebra (GA) was proposed by
D. Hestenes, see e.g. [1], [2], and since then it was successfully
applied in various areas of physics, mathematics and computer
science [3], [4], [5]. This paper presents a brief introduction to
GA. We focus on a special case, namely, the GA of 4D space-
time. The use of geometric calculus is suppressed in order to
stick to traditional calculus as close as possible.

A. Geometric Algebra of Minkowski Space-Time

In GA the fundamental operation (besides addition) is the
geometric product, which in general is (where a, b and c are
vectors) [3]

ab 6= ba , (anticommutative)
(ab)c = a(bc) , (associative)

a(b+ c) = ab+ ac , (left-distributive)
(a+ b)c = ac+ bc , (right-distributive)

a−1 =
a

a2
. (invertible)

A norm is defined through the relation |a|2 := a2, where
a2 is a scalar. Furthermore, the geometric product can be
decomposed into its symmetric and antisymmetric part

ab =
1

2
(ab+ ba) +

1

2
(ab− ba) := a · b+ a ∧ b ,

where · and ∧ denote the scalar and exterior products respec-
tively. It is assumed that all scalars are real. In our terminology
they are called 0-vectors.

4D basis vectors are denoted by γi. The convention is that
γ2
t = +1 and γ2

x = γ2
y = γ2

z = −1. One important result is
that orthogonal vectors, i.e., vectors a and b for which a·b = 0
holds, anticommute. Note that a vector a is usually interpreted
as an “arrow”, i.e., an oriented 1D object.

The multiplication of two vectors leads to objects like
γtγx, which are neither scalars, nor vectors, but bivectors. We
interpret them as oriented 2D objects (“surfaces”). Trivectors
represent oriented 3D objects (“volumes”) and an example is
γtγxγz .

The pseudoscalar I := γtγxγyγz gives a unique represen-
tation of any 4-vector A4 through A4 = |A4|I . We interpret I
as an oriented 4D object (“space-time volume”), with square
I2 = −1; similar to the well-known property of the imaginary
unit.

In space-time there are only 4 basis vectors, hence it is not
possible to construct any 5-vector. Therefore, our algebra is
now complete.

3D vectors σk = γkγt, k = x, y, z, square to +1 and are
mutually orthogonal. Therefore, they behave like basis vectors
of 3D space, but still (implicitly) contain temporal information.
Additionally, I = σxσyσz holds. We denote 3D vectors by an
arrow, e.g., ~E ≡ Exσx + Eyσy + Ezσz .

B. Maxwell’s Equations

We combine the charge density % and the components
jk, k = x, y, z, of the electric current density ~J into a current
density vector J ≡ %γt + jxγx + jyγy + jzγz . Note that ~J
does not equal J with dropped temporal component - they are
related via Jγt = %+ ~J . The fields ~E and ~B are combined to
the Faraday bivector, e.g., [3]

F := ~E + I ~B ,

and ~D and ~H to
G := ~D + I ~H .

While the differential form of Maxwell’s equation remains
similar in the GA of space-time, the integral form differs. We
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denote by Ω a 3D region in space-time, and its boundary by
∂Ω. Let V, S be a volume and a surface in space respectively.
Applying the Fundamental Theorem of Geometric Calculus,
[3] we obtain ∫

∂Ω

(d2x)·F = 0 , (1)

∫
∂Ω

(d2x) ∧G =

∫
Ω

(d3x) ∧ J , (2)

which differs from∫
∂S

~E · d~l = −
∫
S

∂ ~B

∂t
· d~S ,

∫
∂V

~B · d~S = 0 ,
(3)

and ∫
∂S

~H · d~l = −
∫
S

(
∂ ~D

∂t
+ ~J

)
· d~S ,

∫
∂V

~D · d~S =

∫
V

%dV .
(4)

in the sense that (1)-(2) are integral equations in space-time,
whereas in (3)-(4) we have to integrate in space and to
differentiate in time.

C. Constitutive Equations

In this paper we will assume that the conductivity σ, permit-
tivity ε and the permeability µ are scalar functions of space.
Additionally, for simplicity, polarization and magnetization of
the medium are assumed to be zero. Therefore the simplified
constitutive equations are given by

~D = ε ~E ,
~H = µ−1 ~B ,

(5)

that are supplemented by Ohm’s Law in lossy media

~J = σ ~E . (6)

The translation of the simplified constitutive equations (5)
into the space-time form of GA reads

G =
1

2

{
(ε+ µ−1)F − (ε− µ−1)γ0Fγ0

}
, (7)

where γ0 is the four-velocity of the electric medium [3].

II. THE CARTESIAN GRID

For discretization of Maxwell’s equation in the GA setting
we propose a finite-difference-like approach on a Cartesian
grid in space-time, i.e., a natural generalization of Yee’s
scheme [6]. We will show that this general approach is
equivalent to Tonti’s space-time approach proposed in [7] and
equivalent, up to minor modifications, to Finite Integration
Technique (FIT) with Leap-Frog time-integration [8], [9].

The nodes of the primal mesh are introduced as

rpi,j,k,l := (i∆t, j∆x, k∆y, l∆z), (8)

where i, j, k, l are integers. We further introduce edges, e.g.,
in x-direction we obtain

lpi,j+1/2,k,l := i∆t× [j∆x, (j + 1)∆x]× k∆y × l∆z, (9)

that are oriented by the vector γx in x−direction. For simplic-
ity we omit the respective definitions for the other coordinate
directions. Facets are given by

api,j,k+1/2,l+1/2 :=

i∆t× j∆x× [k∆y, (k + 1)∆y]× [l∆z, (l + 1)∆z], (10)

with orientation defined by the bivector γyγz . Volumes in 3D
and space-time volumes are defined in a similar way. The
midpoint of any space-time volume, is identified with a point
on the dual grid. We then proceed as explained above to obtain
edges, facets, volumes and space-time volumes on the dual
grid respectively.

The Cartesian grid obtained in this way is an example
of a dual orthogonal grid pair. This is the main reason for
the efficiency of the Finite Difference Time Domain (FDTD)
method and FIT [6], [8]: the discretization of the material
parameters yields diagonal matrices.

III. DISCRETE QUANTITIES

Equations (1) and (2) are discretized on the primal and dual
grid respectively. We discretize (1) by restricting Ω to the 3D
elements of the primal grid. Therefore we naturally associate
to F the degrees of freedom

fi+1/2,j+1/2,k,l :=

∫
ap
i+1/2,j+1/2,k,l

(d2x) · F. (11)

The discretization of (2) on the dual grid leads to the degrees
of freedom

gi+1/2,j+1/2,k,l := I−1

∫
ad
i+1/2,j+1/2,k,l

(d2x) ∧G. (12)

A link between quantities on the primal and dual grid can
be established through the material relation (7). Therefore, we
approximate (11) and (12) with a midpoint quadrature rule to
obtain

f
i+1/2,j+1/2,k,l

≈
(
(|ap|γ0γx) · F

)
(Mp

a ) =: ApF̃ ,

gi+1/2,j+1/2,k,l ≈
(
(|ad|γyγz) ∧G

)
(Md

a )I−1 =: AdG̃I−1,

where Mp
a and Md

a are the centers of the primal and dual
facets, respectively. For simplicity we omitted the indices on
the right-hand-side. The bar over an index denotes integration
over one mesh step in the corresponding dimension. Note
that the quantities on the right-hand-side must be evaluated
at the midpoints of the respective surfaces even if not stated
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explicitly. Since the geometric product is invertible we obtain
the relations

F̃ = (Ap)−1f
i+1/2,j+1/2,k,l

, (13)

G̃ = (Ad)−1gi+1/2,j+1/2,k,lI, (14)

for the bivectors F̃ , G̃. We finally can use (7) to obtain

gi+1/2,j+1/2,k,lI = Adξ
(
(Ap)−1

)
f
i+1/2,j+1/2,k,l

, (15)

where we introduced the abbreviation:

ξ (A) :=
1

2

[
(ε̄+ µ̄−1)A− (ε̄− µ̄−1)γ0Aγ0

]
, (16)

where ε̄, µ̄ are facet-averaged material parameters. Further-
more we assume that γ0 = γt, i.e., the medium is at rest in
the chosen coordinate system.

Finally, we obtain by (15) a diagonal discrete material
matrix due to the fact that the dual grid introduced above gives
an orthogonal one-to-one correspondence between primal and
dual facets.

IV. DISCRETIZATION

We now state the discrete versions of (1) and (2) explicitly.
The degrees of freedom f, g naturally give rise to the degrees
of freedom e, d, b, h for the electric field strength/flux density
and the magnetic field strength/flux density respectively. E.g.,
we obtain

e
i+1/2,j+1/2,k,l

:=

(i+1)∆t∫
i∆t

(j+1)∆x∫
j∆x

Ex|y=k∆y,z=l∆zdx dt ,

di+1/2,j+1/2,k,l :=

(k+1/2)∆y∫
(k−1/2)∆y

(l+1/2)∆z∫
(l−1/2)∆z

Dx|t=(i+1/2)∆t,x=(j+1/2)∆xdz dy,

and so on. Furthermore, with a bar under an index we denote
a backward difference, i.e.,

hi,j+1/2,k+1/2,l := hi,j+1/2,k+1/2,l − hi,j+1/2,k−1/2,l .

Now, we can write down a discrete version of Maxwell’s
equations, i.e., Maxwell’s grid equations in 4D. Since a 4D-
box has 4 different types of 3D-facets, we will obtain 4 types
of equations.

For the integration over a x, y, z−cube in (2), we obtain

%i+1/2,j,k,l =

di+1/2,j+1/2,k,l+di+1/2,j,k+1/2,l + di+1/2,j,k,l+1/2 ,

which is the same result as for FIT and Tonti’s approach.
However, for a t, y, z−cube in (2) we recover Tonti’s discrete
x−component of Faraday’s Law

ji,j+1/2,k,l = (17)

hi,j+1/2,k+1/2,l − hi,j+1/2,k,l+1/2 − di+1/2,j+1/2,k,l ,

which is also equivalent to the corresponding FIT equation

∆t ji,j+1/2,k,l = ∆t hi,j+1/2,k+1/2,l (18)

−∆t hi,j+1/2,k,l+1/2 − di+1/2,j+1/2,k,l

if integration with respect to time is replaced by the midpoint
quadrature rule. This is also true for the remaining equations.

Since we are using orthogonal primary/dual grids we obtain
from (5) the discrete material relations

di+1/2,j+1/2,k,l

∆y∆z
= ε̄x

e
i+1/2,j+1/2,k,l

∆t∆x
, (19)

b
i,j,k+1/2,l+1/2

∆y∆z
= µ̄x

hi,j,k+1/2,l+1/2

∆t∆x
, (20)

where the material parameters are averaged in space (without
time dependency), e.g., ε̄x = ε·,j+1/2,k,l/(∆y∆z). This cor-
responds to the classical averaging technique as used in FIT
[9]. The FIT material laws (with the same averaging) read

di+1/2,j+1/2,k,l

∆y∆z
= ε̄x

e
i+1/2,j+1/2,k,l

∆x
,

b
i,j,k+1/2,l+1/2

∆y∆z
= µ̄x

hi,j,k+1/2,l+1/2

∆x
. (21)

Using the simplified material relations, we can express
equations on the dual grid in terms of e and b variables. For
example, using (20) in (17) gives

ji,j+1/2,k,l =
∆t∆z

∆x∆y

1

µ̄z
b
i,j+1/2,k+1/2,l

−∆t∆y

∆x∆z

1

µ̄y
b
i,j+1/2,k,l+1/2

+
∆y∆z

∆x
ε̄x
e
i+1/2,j+1/2,k,l

∆t
,

whereas using (21) in (18) we obtain its FIT equivalent

∆tji,j+1/2,k,l =
∆t∆z

∆x∆y

1

µ̄z
b
i,j+1/2,k+1/2,l

−∆t∆y

∆x∆z

1

µ̄y
b
i,j+1/2,k,l+1/2

+
∆y∆z

∆x
ε̄xe

i+1/2,j+1/2,k,l
.

Note that we obtain e
i+1/2,j+1/2,k,l

/∆t and ji,j+1/2,k,l in-
stead of the FIT quantities e

i+1/2,j+1/2,k,l
and ∆tji,j+1/2,k,l

respectively.
One can verify that the analogous statement to the one pre-

sented above is true for all other (primal and dual) equations
and Ohm’s law.

Although a direct application of Ohm’s law ~J = σ ~E is
impossible, because the degrees of freedom for the electric
current and electric field are located at different times. There-
fore, we have to interpolate one of them in time. We choose to
follow Tonti’s approach, [7], i.e., we interpolate e and obtain

ji,j+1/2,k,l =
σ̄x

2

(
e
i+1/2,j+1/2,k,l

+ e
i−1/2,j+1/2,k,l

)
,

from which we obtain by midpoint quadrature the classical
FIT version

ji,j+1/2,k,l =
σ̄x

2

(
e
i+1/2,j+1/2,k,l

+ e
i−1/2,j+1/2,k,l

)
.

without the integration over time.

Proceedings of the "2013 International Symposium on Electromagnetic Theory"

1103 



V. RELATION TO LEAP-FROG TIME INTEGRATION

We disregard losses and consider in the following only the
external source current ~Je. Nonetheless the treatment of Ohm’s
Law is straightforward and it is only supressed for simplicity
of notation.

Furthermore we adopt the same enumeration scheme for
degrees of freedom as in FIT [9] and suppress the spatial
part of the indices to keep formulae short. Therefore, e.g., bi

is a vector of degrees of freedom at time t = i∆t such as
b
i,j+1/2,k,l+1/2

. Then the proposed explicit GA scheme can
be written as

bi+1 = bi −Cei+1/2 (22)

ei+3/2 = ei+1/2 −∆tM−1
ε ji+1

e

+ (∆t)2M−1
ε C̃M−1

µ bi+1 . (23)

with material matrices Mσ , Mε and Mµ and curl operators
C, C̃. They contain entries −1, 0, 1 for constructing the sums
of (17) and (18) in matrix form.
On the other hand, we recall the equations for FIT with Leap-
Frog time integration; they read

__

b
i+1

=
__

b
i
−∆tC_ei+1/2 (24)

_ei+3/2 = _ei+1/2 −∆tM−1
ε

__

j
i+1

e

+∆tM−1
ε C̃M−1

µ

__

b
i+1

. (25)

As previously shown, in the context of our GA scheme we
use

e
i+1/2,j+1/2,k,l

∆t
instead of e

i+1/2,j+1/2,k,l
, (26)

b
i,j,k+1/2,l+1/2

instead of b
i,j,k+1/2,l+1/2

,
ji,j+1/2,k,l

∆t
instead of ji,j+1/2,k,l , (27)

which can be written symbolically as

ei =̂ ∆t_ei , bi =̂
__

b
i
, jie =̂ ∆t

__

j
i

e ,

where
_

b, __e and
__

j are vectors created from FIT degrees of
freedom. However, it is sufficient to define the initial value
for the electric field adequately as

e1/2 = ∆t_e1/2 . (28)

Then, from (24) and (22) we see that

b1 = b0 −Ce1/2 =
__

b
0
−∆t_e1/2 =

__

b
1

and by assuming (27):

e3/2 = e1/2 −∆tM−1
ε j1e + (∆t)2M−1

ε C̃M−1
µ b1

= ∆t_e1/2 −∆t2M−1
ε

__

j
1

e

+ (∆t)2M−1
ε C̃M−1

µ

__

b
1

= ∆t_e3/2 .

Therefore, assuming (28), which refers to the initial time step,
the (26), which refers to all time steps, is true.

VI. CONCLUSION

Although FIT is obtained from (3) and (4) while the
finite-difference-like GA are derived from (1) and (2), the
corresponding numerical schemes are the same (with minor
differences described above). Furthermore our GA scheme
is equivalent to Tonti’s approach for a specific treatment of
Ohm’s Law.

It might be surprising that the space-time integral formu-
lation does not produce a different scheme than that using a
classical space discretization with Leap-Frog, i.e., an explicit
time integration scheme, but both methods are based on
midpoint quadrature. To conclude, the schemes are closely
related: if we have a FIT solver, the only modification we
need to carry out is to change FIT’s current definition

ji,j+1/2,k,l =

∫
dydzJxe

to its value averaged over one time step

ji,j+1/2,k,l =
1

∆t
ji,j+1/2,k,l =

(
1

∆t

∫
dt

)∫
dydzJxe

to obtain a solver for the finite-difference approach to
Maxwell’s equation in the space-time GA setting.
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