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Abstract—Application of integral equation methods in compu-
tational electromagnetics has been widely explored in problems
with varying degrees of complexity. Central to the formulation
of such integral equation methods is the appropriate Green’s
function that in most cases is an important contributor to the
accuracy of the final solution. It is however well known that
at high frequencies special analytical forms of the problem-
matched Green’s function reduces the computation resources
and hence renders solutions to electrically large problems
practicable. These special high-frequency representations are
derived analytically by well-known asymptotic methods when
the characteristic wavenumber |κ| → ∞. In this presentation a
novel asymptotic method, known as hyperasymptotics, originally
developed by Berry and Howls, is introduced. The main feature
of the hyperasymptotic technique is that the numerical error
in neglecting the remainder, obtained after optimal truncation

of the asymptotic series, is of the order O(e−C|κ|), where C
is a positive constant. Thus the error in the hyperasymptotic
method decreases exponentially at high frequencies for |κ| → ∞,

and hence this specific asymptotic technique appears numerically
most suitable for development of hybrid methods for challenging
problems in computational electromagnetics. The salient features
of the hyperasymptotic method is illustrated here with reference
to the Stokes phenomenon for the Airy function of complex
argument, and, its potential applications to some problems in
computational electromagnetics are identified.

I. INTRODUCTION

Problem-matched Green’s function in hybrid integral equa-

tion [1]-[3] methods can increase the computational effi-

ciency for electrically large problems and are obtained by

asymptotic methods [4]-13]. For various applications [14]-[25]

the numerical accuracy of the Green’s function depends on

how accurately its asymptotic form is obtained. This paper

addresses the numerical accuracy of the various asymptotic

methods [26]-[37], and in particular the Stokes phenomenon

[38]-[44] that is intimately associated with the appropriate

(optimal) termination of an infinite asymptotic series [45]-[47].

Recent investigations on hyperasymptotics [48]-[65] sug-

gest that this new approach has the promise of providing

numerically the most efficient form of asymptotic expansion of

integrals that appear in the various Green’s functions [66]-[70].

The hyperasymptotic method corrects the severe numerical

errors occuring across the Stokes lines [57],[58].

In what follows, the Stokes phenomenon and hyperasymp-

totics is reviewed briefly from [48],[58] and [64] followed by

an extensive list of references for the benefit of the reader.

II. STOKES PHENOMENON

The Stokes phenomenon can be described by starting with

the one-dimensional (homogeneous) Sturm-Liouville problem

[4, p. 274, Eq. (1)]

d2g

dz2
+ P (z)

dg

dz
+Q(z)g=0, (1)

where the functions P,Q(z) are known a-priori and we

may assume a propagation in the z-direction. In (1) g :=⇒
g(z, z

′

;κ) maybe recognized as the one-dimensional trans-

mission line green’s function for an inhomogeneous media

along the z-direction of propagation. Equation (1) can then be

cast into the standard Wentzel-Kramers-Brillouin (WKB) form

following the algebraic substitutions in [40, pp. 360-361] to

obtain
d2y

dz2
+ w(z;κ)y=0. (2)

Millington [39] employed what is known as the Liouville-

Green’s transformation [40, ch. 14] that consists of transform-

ing the both dependent and independent variables in (2), and

obtained its following equivalent form

d2Ψ

dx2
+

[

1− κ

x2

]

Ψ=0, (3)

to study the Stokes phenomenon. (It is worth noting that κ=
−5
36 in (3) further admits its reduction to the Airy’s equation.)

When |x| → ∞, the two elementary asymptotic solutions

to (3) are Ψ+(x) ≈ e+x and Ψ−(x) ≈ e−x. A composite

solution to (3) utilizing these two basic asymptotic forms may

then be contructed that reads

Ψ(κ, x)≈K+M+(κ, x)e+x +K−M−(κ, x)e−x. (4)

In (4) the pre-factors M±(κ, x) = exp[Q±(κ, x)], where

Q±(κ, |x| → ∞) → 0 and K± are constants. Millington

further showed through detailed analysis that the pre-factors

M±(κ, x) are indeed multivalued, but remain bounded at

|x| → ∞ in the complex x−plane.

This multivalued nature of M±(κ, x) is such that, say,

in the upper half (ℑm(x) ≥ 0) of the complex x−plane

a radial branch cut may exist to uniquely define the pre-

factor M+(κ, x) but the other pre-factor M−(κ, x) could

be single valued on the entire upper half plane. Similarly,
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on the lower half (ℑm(x) ≤ 0) of the complex x−plane

a radial branch cut may exist for preserving uniqueness of

the pre-factor M−(κ, x) but the pre-factor M+(κ, x) could

otherwise be very well be continuous (single-valued) there.

Note also that in the u.h.p, the term e−x is dominant and

e+x is subdominant, while in the l.h.p their respective roles

are precisely reversed. For |x| → ∞, since both the pre-factors

M±(κ, |x| → ∞) → 1, one finds that the numerical character

of Ψ(κ, x) is precisely dictated by the nature of the coefficients

K± in (4), as |x| → ∞.

Now, it may well happen that the original function Ψ(κ, x)
in (3) is actually single valued everywhere and hence the

asymptotic solution (for |x| → ∞) given in (4) simply cannot

represent the actual function in the entire complex plane

because of the inherent multivaluedness introduced in (4).

Paraphrasing the precise description given by Paris [64, pp. 78-

81], Stokes phenomenon is generally recognized to be a con-

sequence of asymptotically representing an analytic function

(with or without any multivalued structure) by approximants

with a different multivalued structure.

Thus asymptotic expansion of integrals via the steepest

descent methods, variously described in many well-known

references [4]-[8],[28]-[36],[40]-[41],[58],[64], for the general

case

I(κ)=
∫

C

eκw(τ)f(τ)dτ (5)

when |κ| → ∞, could very well lead to the Stokes phe-

nomenon. This happens because upon locating the saddle

point w
′

(τs) = 0 and the associated steepest descent paths

emanating from τs, the substitution s = w(τs) − w(τ) and

its inversion via Lagrange’s theorem [64, p. 11], for calculat-

ing the product f(τ) dsdτ , needs to be carried out. This may

complicate the nature of the integrand in (5) by introducing

arbitrary multivalued forms in certain regions of the complex

plane. This inversion process basically entails accurate calcu-

lation of the coefficients in the Laplace method [53]. Finally,

Λ±(κ, x)≡M±(κ, x)e±x in (4) may very well result from

asymptotic expansions of integrals like (5) and hence lead

to Stokes phenomenon involving numerical inaccuracies as

discussed in [42]-[44],[47]-[52].

A qualitative study of the large argument behavior Airy

function given by the integral

Ai(z)=
1

2π

∫

C1

e(zτ−
τ
3

3
)dτ (6)

which is an exact solution to the corresponding differential

equation
d2f

dz2
− zf=0, (7)

obtained via contour integral transform [33, pp. 50-53], is

a well-studied example [48] for illustrating the Stokes phe-

nomenon.

The composite asymptotic expansion, as |z| → ∞ in (6), is

given by two asymptotic series, u+(z) and u−(z), respectively,

which from [34, p. 93, Eq. (4.38)] reads,

u±(z) =
z−

1
4 e±ξ

2π

+∞
∑

n=0

(±1)n
cn

z3n/2
, where,

ξ =
2

3
z

3
2 = |ξ|e+θ, and,

cn =
Γ(3n+ 1

2 )

32n(2n)!
. (8)

In view of the general composite asymptotic expansion in (4)

the uniform asymptotic expansion to (6) can be written with

the use of (8) as:

Ai(z)≈K+u+(z) +K−u−(z). (9)

In (9) the constants

K+ = 0, for
−π

3
≤ ph(z) ≤ +π

3
,

= , for
π

3
+ δ ≤ ph(z) ≤ 5π

3
− δ; and,

K− = 1, for − π ≤ ph(z) ≤ +π. (10)

The important observation from (10) is that the constant K+

changes discontinuously as ph(z) changes continuously. This

discontinuous change in constants across the Stokes lines

is also known as the Stokes phenomenon. In his pioneering

work, first reported in [48], Berry postulated based on the

earlier work of Dingle [47] that this discontinuous change in

constants in a compound asymptotic expansion is a very rapid

but continuous change. Berry [48] starts with a general form

closely similar to (4) to begin his analysis that reads,

Ψ(κ, x)≈P+(κ, x)eκφ
+(x)+S(κ, x)P−(κ, x)eκφ

−(x). (11)

In (11) the terms P+(κ, x) and P+(κ, x) are called dominant

and subdominant, respectively. Berry, using the Borel summa-

tion formula [41, p. 382],[47, p. 406], shows that [48, Eqs.

(20) & (21)]:

S(κ, x) =
1√
π

σ
∫

−∞

e−χ2

dχ, where,

σ = κ
1
2
ℑm[φ+(x)− φ−(x)]

2ℜe[φ+(x)− φ−(x)]
. (12)

The Stokes lines where the discontinuity happens are those

curves defined by ℑm[φ+(x)− φ−(x)]=0. A more complete

analysis of the Stokes lines is available in [57].

Next, the influence of the Stokes phenomenon in obtaining

extremely accurate asymptotic expansion of the Airy function

is outlined. The material below is primarily gleaned from [49]-

[51] and [58],[64].

III. HYPERASYMPTOTICS

The work of Berry [48], Berry and Howls [49]-[51] and

Boyd [52] focusses on the numerical errors across the Stokes

lines that are defined for the Airy function in (6) at ph(z)=
± 2

3π, or ph(ξ)=±π in view of (8). The hyperasymptotic form
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of the Airy function given below from [58] is for the Stokes

line at ph(ξ)=π.

The main aspect of the hyperasymptotic expansion of the

general integral given in (5) is that the resulting infinite

asymptotic series is truncated at the just the smallest term,

and the remainder of the asymptotic series is then evaluated

via Borel summation which is then further asymptotically

evaluated via the steepest descent method [50]. The analytical

details are straightforward but quite complicated and good

exposition can be found in [58]. The Airy function in (6) is

now reexpressed [58, Eqs. (2.6,7)] along the steepest descent

path, ΓSDP, as:

Ai(z) =
1

2π

(

3

2

)
1
3

ξ−
1
6 e−ξI(ξ), where,

I(ξ) = ξ
1
2

∫

ΓSDP

eξ[f(u)+1]du, and,

f(u) =
1

2
(u3 − 3u). (13)

Departing from the traditional use of the Borel transform for

summing a divergent series as was utilized in [48, Eqs. (12)-

(14)], the integral in (13) is finally expressed in [58] as

I(ξ) =

N−1
∑

n=0

cnξ
−n +RN(ξ), where,

RN(ξ) =
1

2π
(−2ξ)−N

+∞
∫

0

e−xxN−1

(

1 +
x

2ξ

)−1

I(x/2)dx.

(14)

In (14) the Laplace transform depicts a resurgence of the

integral I(x/2) given by (13). Subsequent analysis, using

appropriate contour deformation, of the remainder RN(ξ)
shows that it can be bounded across the Stokes lines if the

optimal truncation in (14) is chosen such that N=2|ξ|, then

with the constant C2 =
√
πe2C1, where C1 is a real positive

constant, the remainder is bounded by the condition [58, p.

515, Eq. (4.18)]

|RN(ξ)| ≤ C2e−2|ξ|. (15)

The result in (15) is the main contribution of the hyperasymp-

totic technique, resulting remainder to decay exponentially as

the large argument |ξ| → ∞. Thus, the remainder (or “higher

order”) terms in an asymptotic expansion are assured to

decrease exponentially, which means that the hyperasymptotic

expansion has the promise of delivering numerically the most

accurate high-frequency (asymptotic) solution. This technique

has not been used so far in high-frequency techniques for

electrically large CEM problems.

Finally, the Airy function from [58, Eq. (5.6)] reads

Ai(z) ≈ z−
1
4

2π

(

3

2

)
1
2
[

e−ξ

2|ξ|−1
∑

p=0

cpξ
−p

+


2
erfc{k(θ)|ξ| 12 }e+ξ

N
′

−1
∑

q=0

(−1)qcqξ
−q

]

. (16)

In (13) to (16) the constants cn,p,q are given in (8). In (16)

erfc(· · · ) is the error function integral and is related to (12).

IV. SUMMARY

In this brief exposition of the hyperasymptotic method

the central argument advanced in favor of its application

to electrically large CEM problems, is that this method has

the promise of yielding the numerically most accurate high-

frequency (asymptotic) Green’s function. It is shown that a

uniformization across the Stokes lines of the Airy function

can be obtained that yields errors which decrease exponentially

when the characteristic large parameter |κ| → ∞. Numerical

results to demonstrate the efficiency of the hyperasymptotic

method will be provided at the time of the presentation.
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