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Abstract—This paper presents two variants of a generalized
Jordan’s lemma with applications in waveguide theory. As a
main application is considered an asymptotic analysis for open
waveguide structures with circular geometry. In particular, the
generalized Jordan’s lemma can be used to justify that field
components can be calculated as the sum of discrete and non-
discrete modes, i.e., as the sum of residues and an integral
along the branch-cut defined by the transversal wavenumber
of the exterior domain. An explicit example regarding the axial
symmetric TM0 modes of a single core transmission line, wire, or
optical fibre is included to demonstrate the associated asymptotic
behavior for a typical open waveguide structure.

I. INTRODUCTION

The purpose of this paper is to provide a generalization of
Jordan’s lemma with applications in waveguide theory. Two
variants of a generalized lemma are presented which can be
used as a basis for asymptotic analysis and a study of non-
discrete (radiating) modes of complicated open waveguide
structures with circular geometry, such as HVDC power cables
[1], [2], [3] or optical fibers [4], [5], [6]. In particular, asymp-
totic approximation methods for Fourier integrals including
rigorous error bounds [3], [7] can be used in order to evaluate
the contribution from the branch-cut integral in comparison to
the residues [3].

The present description is based primarily on observations
made with respect to the axial symmetric fields of a multi-
layered coaxial cable [8]. In [8] is given a layer-recursive
description of the dispersion function for axial symmetric
Transverse Magnetic (TM) fields, and which is well-suited
for asymptotic analysis. The recursion is based on two well-
behaved (meromorphic) sub-determinants which are defined
by a perfectly electric conducting (PEC) and a perfectly
magnetic conducting (PMC) termination, respectively. In par-
ticular, the analysis in [8] shows that for a multi-layered open
waveguide structure, the dispersion function contains only one
branch-point, and which is related to the exterior domain.

Another crucial observation is that the basic condition for
the standard Jordan’s lemma [9], [10] is not generally satisfied
with open waveguide structures. Hence, the associated Fourier
transform does not vanish on the appropriate semicircle in the
complex plane, as the radius of the semicircle tends to infinity.

The literature on generalized versions of Jordan’s lemma
is not vast, see e.g., [11], [12]. In [11] on p. 245, a gen-
eralized Jordan’s lemma is defined concerning a rotation of

the associated semicircle. This lemma, however, assumes that
the transform has the same asymptotic behavior at infinity
as with the standard Jordan’s lemma. In [12], an extended
Jordan’s lemma is presented where the Fourier transform
is assumed to have a sub-exponential growth on the whole
semicircle in the upper half of the complex plane. However,
the extended lemma as it is stated in [12] does not seem
to be rigorously established. For this reason, two different
variants of a generalized Jordan’s lemma are given here.
The first variant can be regarded as a modification of the
extended lemma presented in [12]. The second variant is a true
generalization of the standard Jordan’s lemma in the sense that
the standard lemma becomes a special case of the generalized
lemma. Both variants of the generalized lemma appear to be
adequate for open waveguide structures, with the purpose of
justifying that field components can be calculated as the sum
of discrete and non-discrete modes.

II. FIELD COMPONENTS IN CIRCULAR GEOMETRY

The vector components of the electromagnetic field in a
multi-layered waveguide with circular geometry can generally
be written in terms of an inverse Fourier integral as follows

ϕm(ρ, z) =
1

2π

∫ ∞
−∞

F (α)

G(α)
eiαz dα =

∫ ∞
−∞

f(α)eiαz dα, (1)

where ρ and z are the radial and longitudinal cylindrical
coordinates, m the azimuthal index and α the Fourier variable.
The function f(α) = F (α)/(2πG(α)) consists of various
rational combinations of Bessel functions and Hankel func-
tions of the first and second kind and order m. Here, G(α)
is the (transcendental) dispersion function obtained as the
determinant of the linear system of equations representing the
boundary conditions at hand, and F (α) is determined by the
excitation, or sources that are present, see e.g., [1], [8], [13],
[14]. It should be noted that the function f(α) in (1) depends
also on the radial coordinate ρ.

The arguments of the Bessel and Hankel functions contain
the transversal wavenumbers

κ =
√
k20µε− α2, (2)

for each cylindrical layer, and where µ and ε are the corre-
sponding relative permeability and permittivity, respectively.
Here k0 = ω/c0 is the wavenumber in vacuum, c0 the speed
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of light in vacuum, and ω the angular frequency. The relative
permeability and permittivity in each layer are generally
complex valued for lossy materials. The square root κ =

√
w

in (2) is defined such that 0 < argw ≤ 2π and 0 < arg κ ≤ π
and hence Imκ ≥ 0, see e.g., [15].

For a multi-layered open waveguide structure with circular
geometry, the function f(α) in (1) exhibits only one branch-
point, and which is related to the exterior domain, see [8]. This
branch-point is denoted αc and is given by αc = k0

√
µeεe,

where µe and εe are the relative permeability and permittiv-
ity of the exterior domain, respectively. The corresponding
branch-cut for the square root κ =

√
k20µeεe − α2 is denoted

by C1 and C2 in the α-plane, and D1 and D2 in the κ-plane,
as depicted in Fig. 1.

x
x

αn
k0
√
µeεe

C1
C2 C′2

κn
D1D2

D′
2

Fig. 1. Integration contours for an open waveguide structure with losses.
Here, C1 and C2 are the original contours associated with the branch-cut at
αc = k0

√
µeεe, and C′2 the deformed contour. The corresponding contours

in the κ-plane are denoted D1, D2 and D′
2 where κ =

√
k20µeεe − α2.

Note that the transversal wavenumbers in (2) will tend to
infinity as

κ =
√
k20µε− α2 ∼ ±iα, (3)

as α→∞. Since the asymptotic behavior of the Hankel func-
tions are given by H

(1)
m (κρ) ∼

√
2/(πκρ)ei(κρ−mπ/2−π/4)

and H
(2)
m (κρ) ∼

√
2/(πκρ)e−i(κρ−mπ/2−π/4) for large argu-

ments [16], the asymptotic behavior of the function f(α) is
generally of a form similar to

f(α) ∼Mαpeiκa, (4)

as α→∞, and where M is a constant, p ≥ 0 an integer and
a a positive real number. It follows that

f(α)→ 0, (5)

as R→∞, α = Reiθ, 0 ≤ θ ≤ π and θ 6= π/2. However, for
θ = π/2, it is seen that

f(α) ∼Mαpe±iRa, (6)

as R→∞ and α = iR. Hence, the standard Jordan’s lemma
[9], [10] can not be used here. However, a generalized Jordan’s
lemma is readily adapted to the asymptotics in (4), and which
can be used to justify that the integral in (1) can be closed in
the upper half of the complex plane where Imα ≥ 0.

III. THE GENERALIZED JORDAN’S LEMMA

The following two variants of a generalized Jordan’s lemma
are useful in waveguide theory, in particular with open waveg-
uide structures. In both variants, it is assumed that f(α) is
an analytic function in the upper half of the complex plane
where Imα ≥ 0, except for a branch-cut and a countable
set of isolated singularities (poles). Further, the symbol o(·)
denotes order less than (·), see [7]. The first lemma below is
a modification of the extended Jordan’s lemma presented in
[12], and which has an elementary proof as outlined below.

Lemma III.1. (Generalized Jordan’s lemma I)
Let CR be the upper semicircle defined by α = Reiθ with
radius R > 0 and angle 0 ≤ θ ≤ π. Let z > 0, and assume
that

αf(α)eiαz = o(1) as |α| → ∞ and α ∈ CR, (7)

and where the convergence is uniform. Then the following
identity is valid

lim
R→∞

∫
CR
f(α)eiαz dα = 0. (8)

Proof: Let ε > 0 be arbitrary and R sufficiently large so
that |αf(α)eiαz| ≤ ε for α ∈ CR. Now,∣∣∣∣∫

CR
f(α)eiαz dα

∣∣∣∣ ≤ ∫
CR
|f(α)eiαz||dα|

≤ πR sup
CR
|f(α)eiαz| = π sup

CR
|αf(α)eiαz| ≤ πε. (9)

Since the right-hand side of (9) above can be made arbitrarily
small, this shows that (8) is valid.

Even though the lemma III.1 is sufficient for our purposes,
it does not cover all the cases that are covered by the stan-
dard Jordan’s lemma [9], [10]. In particular, the lemma III.1
requires that αf(α) = o(1) on the real axis where Imα = 0,
whereas the standard lemma only requires that f(α) = o(1).
For this reason, another variant of the generalized Jordan’s
lemma can be formulated which includes the standard lemma.
This is achieved by dividing the upper semicircle into two sub-
sectors, and by exploiting the inequality sin θ ≥ 2θ/π which
is valid for 0 ≤ θ ≤ π/2.

Lemma III.2. (Generalized Jordan’s lemma II)
Let β be an angle in the interval 0 ≤ β < π/2. Let CR1 be
the contour defined by α = Reiθ where 0 ≤ θ ≤ π/2 − β
and π/2 + β ≤ θ ≤ π, and let CR2

be the contour defined by
α = Reiθ, π/2− β < θ < π/2 + β, and where R > 0 is the
radius of the corresponding sectors, see Fig. 2. The contour
CR2 is void when β = 0. Suppose that the function f(α) has
the following asymptotic behavior for large α.

1) The function f(α) converges uniformly to zero on CR1 ,
i.e.,

f(α) = o(1) as |α| → ∞ and α ∈ CR1
. (10)

2) The function f(α) has sub-exponential growth on CR2 ,
i.e.,

f(α) = o(ea|α|) as |α| → ∞ and α ∈ CR2
, (11)
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where a > 0 is an arbitrary constant and the conver-
gence is uniform.

The following identity is valid under the assumptions 1 and 2
above

lim
R→∞

∫
CR1
∪CR2

f(α)eiαz dα = 0, (12)

where z > 0.

αn
R

CR1
CR1

CR2
CR2

β β

Fig. 2. Integration contours with the generalized Jordan’s lemma.

Proof: The integral over CR1
is evaluated as follows. Let

ε > 0 be arbitrary and R sufficiently large so that |f(α)| ≤ ε
for α ∈ CR1 . Now, with α = Reiθ∣∣∣∣∣
∫
CR1

f(α)eiαz dα

∣∣∣∣∣ =
∣∣∣∣∣
∫
CR1

f(α)eiRze
iθ

Reiθi dθ

∣∣∣∣∣
≤
∫
CR1

|f(α)|e−Rz sin θR dθ ≤ εR
∫
CR1

e−Rz sin θ dθ

= 2εR

∫ π/2−β

0

e−Rz sin θ dθ ≤ 2εR

∫ π/2−β

0

e−Rz2θ/π dθ

=
πε

z

(
1− e−Rz(1−2β/π)

)
, (13)

where sin θ > 2θ/π for 0 ≤ θ ≤ π/2−β has been used. Since
the right-hand side of (13) above can be made arbitrarily small,
this shows that

lim
R→∞

∫
CR1

f(α)eiαz dα = 0, (14)

where z > 0.
The integral over CR2

is now evaluated as follows. Let z > 0
be arbitrary, but fixed. Let ε > 0 be arbitrary and R sufficiently
large so that |f(α)| ≤ εeaR for α ∈ CR2

. Again, with α =
Reiθ∣∣∣∣∣
∫
CR2

f(α)eiαz dα

∣∣∣∣∣ =
∣∣∣∣∣
∫
CR2

f(α)eiRze
iθ

Reiθi dθ

∣∣∣∣∣
≤
∫
CR2

|f(α)|e−Rz sin θR dθ ≤ εReaR
∫ π/2+β

π/2−β
e−Rz sin θ dθ

= 2εReaR
∫ π/2

π/2−β
e−Rz sin θ dθ

≤ 2εReaR
∫ π/2

π/2−β
e−Rz2θ/π dθ

=
πε

z
eaR

(
e−Rz(1−2β/π) − e−Rz

)
=
πε

z

(
e−R(z(1−2β/π)−a) − e−R(z−a)

)
, (15)

where sin θ > 2θ/π for π/2 − β ≤ θ ≤ π/2 has been used.
Note that 0 < β < π/2 so that 0 < 1− 2β/π < 1. Hence, a
can be chosen so that

a < z(1− 2β/π) < z. (16)

Since the right-hand side of (15) above can be made arbitrarily
small, this shows that

lim
R→∞

∫
CR2

f(α)eiαz dα = 0, (17)

where z > 0. Note that when β = 0 the contour CR2
above is

void and the contour CR1
consists of the whole semicircle for

0 ≤ θ ≤ π. This situation corresponds to the standard version
of the Jordan’s lemma [9], [10].

It should be noted that even though the two variants of the
generalized Jordan’s lemma III.1 and III.2 above are similar,
they are not equivalent and one can not say that one is more
general than the other.

IV. ASYMPTOTIC ANALYSIS

Based on the generalized Jordan’s lemma III.1 or III.2
together with the asymptotic behavior in (5) and (6), the
integral in (1) can be written as

ϕm(ρ, z) =
∑
j

iF (αj)

G′(αj)
eiαjz +

∫
C2
q(α)eiαz dα, (18)

where αj are the poles, the function q(α) is given by

q(α) = f(α)|C2 − f(α)|C1 , (19)

and C1 and C2 are the branch-cut contours depicted in Fig. 1.
The function q(α) is analytic by continuation except for the

branch-point αc, and the contour C2 can therefore be deformed
to the vertical contour C′2 depicted in Fig. 1. Note that the
vertical contour C′2 corresponds to the contour D′2 in the κ-
plane where κ approaches the asymptot Imκ = Re k0

√
µeεe

as α→∞. Hence, factors of the type eiκa will be oscillating,
but do not decay exponentially on C′2. Assume that the function
q(α) and possibly some of its derivatives q(n)(α) for n =
0, 1, . . . , N , are defined and continuous at the branch-point
αc. It follows then from (4) that q(α) and q(n)(α) are upper
bounded on the contour C′2 as

|q(n)(α)| ≤M (n)(1 + |α− αc|pn), (20)

where M (n) is a constant, pn an integer and n = 0, 1, . . . , N .
One can also assume that there will be a logarithmic singu-
larity in one of the first derivatives of q(α), and which can be
expressed as

q(N+1)(α) = A ln(−i(α− αc)) + r(N+1)(α), (21)

where A is a constant and r(N+1)(α) a function which is
continuous at αc and upper bounded on the contour C′2 as

|r(N+1)(α)| ≤M (N+1)(1 + |α− αc|pN+1), (22)

where M (N+1) is a constant and pN+1 an integer.
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Explicit expressions for the derivatives q(n)(αc) and the
constant A can be obtained by a detailed study of the func-
tion q(α) defined in (19). Here, it is useful to employ the
identity κ|C1 = −κ|C2 and H

(1)
m (κρ)|C1 = H

(1)
m (−κρ)|C2 =

−(−1)mH
(2)
m (κρ)|C2 , to account for the discontinuity over the

branch-cut, and where κ =
√
k20µeεe − α2. An asymptotic

study of the branch-cut integral in (18) can now be pursued
by integration by parts as described in [3], [7].

V. EXAMPLE

As an explicit example of an open waveguide structure is
considered a single core transmission line, wire, or optical
fibre, with radius a. The relative permeability and permittivity
of the inner and the outer exterior domain are denoted by µ1,
ε1, µ2 and ε2, respectively, see Fig. 3.

a

µ1 ε1

µ2 ε2

Fig. 3. Circular waveguide, wire, or optical fibre, with an exterior domain.

A vector point-source J = Pρρ̂
1
ρδ(ρ − ρ′)δ(φ)δ(z) is

considered as a source for the axial symmetric TM0 modes.
The dipole source is placed close to the inner radius at
ρ′ = a−. The electric field component Ez(ρ, φ, z) is given
by

Ez(ρ, φ, z) =

∫ ∞
−∞

f(α)eiαz dα, (23)

where a closed form solution for ρ < a is given by

f(α) =
1

2π
Pρ

η0
2π

α

a

ε2
ε1

κ1
k0

H
(1)
1 (κ2a)J0(κ1ρ)

ε1κ2J1(κ1a)H
(1)
0 (κ2a)− ε2κ1J0(κ1a)H(1)

1 (κ2a)
, (24)

where η0 is the wave impedance of vacuum and where κ1 =√
k20µ1ε1 − α2 and κ2 =

√
k20µ2ε2 − α2.

By using the asymptotic approximations of the Hankel
functions for large arguments, it is found that

f(α) ∼ 1

2π
Pρ

η0
2π

ε2
ε1

1

k0a

ακ1
√

a
ρ

(
eiκ1(a+ρ)e−i

3π
4 + eiκ1(a−ρ)e−i

π
4

)
ε1κ2

(
ei2κ1ae−i

3π
4 + ei

3π
4

)
− ε2κ1

(
ei2κ1ae−i

3π
4 + e−i

π
4

) ,
(25)

as α → ∞ and ρ < a. Note that as α → ∞, κ =√
k20µε− α2 → ±iα with Imκ ≥ 0. Hence, it is seen that

the asymptotics in (25) satisfies the requirements (7), (10) and
(11) of both the generalized Jordan’s lemmas III.1 and III.2
(with 0 < β < π/2), and the integration path used in (23)
can therefore be closed in the upper half of the complex plane
where Imα > 0.

VI. CONCLUSION

Two variants of a generalized Jordan’s lemma has been for-
mulated which can be used to establish that field components
of an open waveguide structure can be calculated as the sum of
residues (discrete modes) and an integral along the branch-cut
corresponding to the transversal wavenumber of the exterior
domain (non-discrete modes). As an explicit example of an
open waveguide structure is considered the axial symmetric
Transverse Magnetic (TM) modes of a single core transmission
line, wire, or optical fibre.
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