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Abstract—The acquisition of three-dimensional radiation pat-
tern is important for characterizing antenna. Spherical antenna
measurement is a practical approach to measured antenna
pattern; however, in most cases, the measured samples can not
be used directly, and reconstruction is needed to achieve useful
data. Spherical vector waves are preferred as tool for pattern
reconstruction, and the band-limited property of spherical wave
expansion enables to analyse reconstruction by the sampling
theorem. This research identifies the limitation of conventional
algorithm, and proposes novel approaches to overcome the
limitation.

I. INTRODUCTION
The fundamental requirement for characterizing antenna is

the acquisition of its full pattern, that is, the complex polari-
metric antenna response in angular domain. Antenna pattern
reconstruction refers to the determination of the radiation
pattern of an antenna under test (AUT), by measuring the
amplitude and phase of the electromagnetic signal received
from the AUT.
Spherical antenna measurement is the unique approach to

measure antenna pattern in spherical geometry. The complex
electric field radiated from vertical or horizontal polarized
AUT be measured through scanning over a spherical surface
in both the azimuthal and elevation dimensions. However,
due to the limitation of measurement set-up, the scanning in
measurement may not be taken on whole sphere but only on
some part of it; on the other hand, due to the limitation of
measurement time, only coarse sampling interval is practical.
The measured samples could be either incomplete or coarse,
therefore, extrapolation and interpolation are needed to recon-
struct the antenna pattern.
This research focuses on analytic and continuous antenna

pattern reconstruction. Generally, the plane wave representa-
tion and spherical wave representation of antenna radiation
pattern are utilized for the reconstruction. While the plane
wave model has infinite angular resolution regardless of the
antenna size, the spherical wave model has finite angular
resolution determined by the antenna size [1]; in this research,
the spherical wave model is preferred.
The constrained iterative restoration algorithm in [2] has

been extensively explored and applied for a long time; several
years ago, in [3] [4], the spherical wave model and its band-
limited property are connected with the classical iterative algo-
rithm, to restore signal and reconstruct radiation pattern. Since

the measured samples are given as condition, figuring out what
kind of samples could be reconstructed, in other words, how
incomplete (measurement range) and how coarse (sampling
interval) samples could be tolerated by the algorithm, are very
important.
The main objective of this work is to study on the an-

tenna pattern reconstruction by spherical vector waves in the
perspective of sampling theorem. Limitations of conventional
iterative algorithms are identified, and proposed algorithm will
be introduced and validated by numerical investigations.

II. SPHERICAL WAVE EXPANSION
Spherical wave functions (SWF) [5], are homogeneous solu-

tions to vector Helmholtz equation in the spherical coordinates.
The radiation pattern outside the minimum sphere of antenna
can be expanded into a weighted sum of spherical wave
functions, that is, spherical wave expansion (SWE) [5] :

E(r, θ,φ) = k
√
η

2�

s=1

N�

n=1

n�

m=−n

QsmnFsmn(r, θ,φ) (1)

where:
m: mode indices for φ direction
n: mode indices for θ direction
Fsmn(r, θ,φ): SWF, TE (s = 1) and TM (s = 2) mode
SWF compose of a complete orthogonal set
Qsmn: spherical wave coefficient (SWC)
k
√
η: coefficient to ensure the normalization condition

that unit SWC corresponds to 1 W 1
2 , k is the wavenumber

N : truncation number
The expanded series can be truncated at a finite number de-

termined by antenna’s minimum sphere. The minimum sphere
of an antenna is defined as the smallest possible spherical
surface, which is centred at the coordinate origin and could
enclose the antenna completely.
The highest spatial frequency for a radiating field is deter-

mined by the wavelength as 1/λ; according to the sampling
theorem, its minimum sampling interval should be λ/2, thus its
sampling number is no more than �2kr0� per circumference of
the minimum sphere, where r0 is the radius of the minimum
sphere. To represent the radiation field, the spherical wave
number should be no less than �2kr0�, therefore the bandwidth
(truncation number) for the expansion should be at least �kr0�.
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By increasing the bandwidth, the evanescent components of
the field can be retained. Therefore, in this work, truncation
number is defined as N ≥ �kr0�, and the brackets indicate
the floor function, the largest integer smaller than or equal to
kr0.
Generally SWC are unknown, and field at certain observing

sphere is achieved to calculate SWC; once the SWC has been
solved, the field can be calculated at anywhere outside the
antenna minimum sphere.

III. ANTENNA PATTERN RECONSTRUCTION FOR
SPHERICAL ANTENNA MEASUREMENT

The measured samples are conventionally reconstructed by
iterative SWE algorithm [3] [4]. For a specific reconstruction
algorithm, how coarse and how incomplete the samples are
will influence the accuracy of the reconstruction pattern.
Investigation will be conducted to figure out the influences of
sampling interval and measurement range on the reconstruc-
tion accuracy by conventional iterative SWE algorithm.

A. Influence of Sampling Interval on Reconstruction Accuracy
To simply study on the influence of sampling interval on

reconstruction accuracy, a set of complete pattern samples over
the whole scanning sphere is necessary: E(θl1 ,φl2), θl1 ∈ [0 :
∆θ : π],φl2 ∈ [0 : ∆φ : (2π −∆φ)], where ∆θ and ∆φ are
the sampling interval in elevation and azimuthal dimensions
respectively. Conventionally, SWC can be calculated from the
achieved samples, and interpolation can be conducted along
with the reconstruction of antenna pattern by SWE.
According to the sampling theorem and the band-limited

property of SWE, the sampling number per circumference
should be at least twice the truncation number 2N , that is,
the sampling interval in measurement should be less than π

N .
Since the truncation number is determined by the minimum
sphere radius of AUT, the requirement for sampling interval
is determined by the minimum sphere radius as well.
In practical measurement, AUT is not necessarily located

in the center of the global coordinate. For example, the pivot
of circular antenna array is usually located in the coordinate
center, therefore each antenna element is deviated from the
center. For the same AUT, the minimum sphere radius when
it is deviated from coordinate center is obviously bigger
than the radius when it is centred. Therefore, the minimum
sampling interval required (the required sampling number per
circumference) for the deviated case should be smaller (bigger)
than that for the centred case.
Taken the open-ended rectangular waveguide (OERW) as an

example of AUT for illustration, the normalized mean square
errors of the reconstructed pattern from samples with different
sampling intervals are investigated, to assess the differences
between the reconstructed pattern and the reference pattern,
as is shown in Fig. 1.
With small enough sampling intervals, the reconstruction

error will stay the same as the truncation error; the bigger
the truncation number is, the smaller the reconstruction error
will be. On the other hand, the Nyquist sampled, 2N points
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Fig. 1. Error of reconstructed pattern by conventional algorithm for both
deviated OERW and centred OERW

TABLE I
OERW SIMULATION PARAMETERS

Wavelength 27.3mm
Aperture size (a× b) 0.84λ × 0.37λ

1) deviated case: move along
Aperture location x-axis by λ from center

(Nmin =6)
2) center-located (Nmin =2)

Observing distance 45.5λ

per circumference in the spherical measurement ( πN sampling
interval), is not definitely sufficient for the algorithm to
reconstruct accurately; 2(N + 1) points or more could be
enough, therefore the sampling interval should be no larger
than 2π

2(N+1) . In addition, comparing between both cases when
truncated at N = �kr0�, for deviated case, although the
truncation number used is larger than the centred case, the
reconstruction error is even bigger; what is worse, the required
sampling interval is smaller.
There is a trade between required sampling interval and the

truncation number used; for larger N , the truncation error is
smaller but more samples are needed to represent the higher
modes.

B. Influence of Measurement Range on Reconstruction Accu-
racy

To simply study on the influence of measurement range on
reconstruction accuracy, a set of incomplete samples on some
part of the scanning sphere is the target. Here is a typical
incomplete measured data set: E(θl1 ,φl2), θl1 ∈ [0 : ∆θ :
θscan],φl2 ∈ [0 : ∆φ : (2π − ∆φ)], where θscan represents
the measurement range.
Conventional iterative algorithm involving SWE [3] [4] can

be concluded as :
1) extend incomplete samples by zero-padding to cover
entire sphere

2) calculate SWC using extrapolated data
3) calculate new pattern by SWE using SWC achieved in
former step
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4) update calculated pattern data by replacing the measured
samples within the scanned area

Steps 2 to step 4 are repeated iteratively.
Considering the practical measurement again, AUT is not

necessarily located in the center of global coordinate system.
Take the deviated and centred OERW in Table I. again as
example; given absolutely sufficient sampling interval ∆θ =
∆φ = π

60 , the normalized mean square error of the re-
constructed pattern from samples with different measurement
range will be investigated. Fig. 2 shows the error of recon-
structed patterns for both the deviated and the centred cases,
with samples achieved through spherical antenna measurement
with different measurement range.
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Fig. 2. Error of reconstructed pattern by conventional algorithm for both
deviated OERW and centred OERW

It is found that the reconstruction error will stay the same
as truncation error with adequate measurement range, and the
bigger the truncation number is, the smaller the convergent
reconstruction error. Besides, when truncated at N = �kr0�,
for the deviated case, the algorithm require larger measurement
range than the centred case, but the reconstruction accu-
racy is even lower. According to sampling theorem, the un-
measured range on scanning sphere should be no more than
the biggest allowable sampling interval 2π

2(N+1) . Therefore,
the measurement range for elevation and azimuthal dimension
should be no less than π(1 − 1

N+1 ) and 2π(1 − 1
2(N+1) )

respectively. Again, the requirement measurement range is
decided by the truncation number, furthermore determined by
the minimum sphere radius. Obviously, the bigger the radius
of AUT minimum sphere is, the larger the measurement range
will be required by the conventional algorithm. The trade
between truncation number and measurement range should be
handled properly.

C. Limitation of Conventional Algorithm
Due to the trade between truncation number, and required

measurement range and sampling interval, the conventional
algorithm is limited by the radius of the AUT minimum
sphere in the global coordinate of measurement set-up. To
overcome the limitation, algorithm enabling to minimize the
AUT minimum sphere radius in the iterative SWE process will
be proposed.

D. Proposed Algorithm
1) Applying Translation and Rotation of Spherical Waves:

For the deviated case, the samples are measured in the
coordinate system that AUT is not centred; there are ways
to translate the measured samples into the primed coordinate
system which center the AUT, and that is the problem of
coordinate translation. Generally, coordinate translation could
be accomplished by Cartesian method and Spherical method,
and the former method will not be illustrated here.
Arbitrary translations of coordinate system can be accom-

plished by a succession of three operations: rotation, axial
translation, and inverse rotation. To achieve the radiation pat-
tern in primed coordinate systems, the representative spherical
waves function could be rotated, translated and inverse rotated.
In Hansen’s book [5], both the rotation and translation of
spherical waves are provided; although only z-directed axial
translation is described, it is sufficient for the coordinate
translation.
[5] Euler angles (χo, θo,φo) are introduced to describe the

rotation from the unprimed to the primed coordinate system.
Rotation angle about z-axis is denoted as φo, and rotation angle
about y-axis is denoted as θo, and rotation angle about z-axis is
denoted as χo. Through rotation, the spherical wave function
F

(c)
smn(r, θ,φ) in the unprimed coordinate system (r, θ,φ) can

be achieved as the combination of spherical waves defined in
the primed system (r�, θ�,φ�):

F(c)
smn(r, θ,φ) =

n�

µ=−n

ejmφodnµm(θo)e
jµχoF(c)

sµn(r
�, θ�,φ�)

(2)
where the rotation coefficient dnµm(θo) is a real function of θ.
[5] Suppose the primed coordinate system (r�, θ�,φ�) is

translated a distance A in the positive direction of z-axis of
the unprimed coordinate system (r, θ,φ), then spherical wave
function F(c)

smn(r, θ,φ) in the unprimed coordinate system will
be achieved through:

F(c)
sµn(r, θ,φ) =

2�

σ=1

∞�

υ=|µ|,υ �=0

Csn(c)
σµυ (kA)F(1)

σµυ(r
�, θ�,φ�)

(3)
when r� < |A|, and

F(c)
sµn(r, θ,φ) =

2�

σ=1

∞�

υ=|µ|,υ �=0

Csn(1)
σµυ (kA)F(c)

σµυ(r
�, θ�,φ�)

(4)
when r� > |A|. Function C

sn(c)
σµυ (kA) is the translation coeffi-

cients.
Measured samples in the primed coordinate system can be

achieved by utilizing the rotation and translation of spherical
waves; then pattern reconstruction could be conducted by
iterative SWE algorithm in the primed coordinate system
where AUT is centred. The disadvantage of this approach is
that the calculation is quite complex.

2) Applying Translational Phase Shift: Referring to the
antenna array theory, a translation in space becomes a phase
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shift in the Fourier domain, and the relative displacements
of antenna elements with respect to each other introduce
relative phase shifts in the radiation vector. In the case
of deviated AUT, by translational phase shift of measured
samples, the amplitude pattern stays the same, and the phase
pattern is smoothed enabling to be reconstructed with small
truncation number. This is much easier than the approach
applying rotation and translation of spherical waves, but with
assumption that the scanning sphere radius is much bigger than
the shifted distance. Through shifting the deviated AUT pattern
to coordinate center, the minimum sphere radius will always
be minimized; both the tolerance for sampling interval and
measurement range will be extended. The proposed algorithm
guarantees the same requirements of both sampling interval
and measurement range for the same AUT, and the antenna
pattern reconstruction will not be limited by the AUT location
any more. Fig. 3 gives the proposed algorithm scheme.
Given the incomplete measured samples distributed as 0 :

π
6 : 2π

3 in θ dimension and 0 : π
6 : 11π

6 in φ dimension, for
the deviated OERW case in Table 1, Fig. 4 and Fig. 5 provide
a set of examples of the E-plane amplitude of reconstructed
pattern by conventional algorithm and proposed algorithm
respectively; obviously, the proposed algorithm could well
reconstruct the incomplete samples while the conventional
algorithm could not.
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Fig. 3. Proposed algorithm for both complete and incomplete spherical
measurement

IV. CONCLUSION
This research mainly concerns the analytical reconstruction

of radiation pattern from measured samples in the spherical
antenna measurement. Spherical vector waves are the main
tool, and the band-limited property of SWE makes it possible
to evaluate the reconstruction by sampling theorem. It is found
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Fig. 4. E-plane of reconstructed pattern by conventional algorithm
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Fig. 5. E-plane of reconstructed pattern by proposed algorith

that the conventional algorithm is limited by the AUT location.
To overcome the limitation, algorithm applying coordinate
translation technique by rotation and translation of spherical
waves, as well as the translational phase shift techniques are
proposed. This research mainly benefit the characterization of
AUT under given severe sampling condition.
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