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Abstract – This paper considers the imaging of objects located 

close to rough surfaces such as ocean or terrain. If transmitters 

and receivers are also located close to rough surfaces, incident 

wave is no longer a plane wave, nor a spherical wave in free 

space and it is necessary to consider Green’s functions with the 

point source located close to the surface, similar to the 

Sommerfeld dipole problem.  

This paper considers the near surface imaging by making use 

of time-reversal imaging and surface flattening transform. 

Surface flattening transform convert the rough surface problem 

into flat surface with inhomogeneous random medium. MCF 

(Mutual Coherence Function) is obtained and used to obtain 

imaging of point target near rough surface, making use of the 

multi-static data matrix, time-reversal matrix, the eigenvectors, 

and the steering matrix. Numerical examples are given.   

An important point is that integration of stochastic wave 

propagation and signal processing is necessary to obtain imaging 

through complex clutter environment.  

I. INTRODUCTION 

 

Near rough surface imaging is an important problem with 

many applications in the detection and imaging of objects near 

ocean and terrain surfaces. Objects may be located above or 

below rough surfaces and the detecting sensors are all located 

near or on the surface. This is related to the problem of radio 

wave propagation over smooth earth. However, if the surface 

is rough, several additional problems need to be considered. 

Since the sensors are near the surface, the wave incident on 

rough surface is no longer spherical or beam wave, usually 

assumed for LGA (Low Grazing Angle) scattering. Instead, 

we need to consider stochastic Green’s function with the 

source located near the surface. Both coherent and incoherent 

waves travel over the rough surface interacting with rough 

surface.  

The development of the stochastic Green’s function near 

rough surface has been studied, in particular when rms height 

is small based on Dyson and Bethe-Salpeter’s equations. In 

this paper, we present an alternative approach which may be 

applicable to rough surfaces with small and large rms. We 

also consider not only the rough surface scattering, but also 

the inclusion of the array signal processing in the near surface 

imaging.  

First, we discuss surface flattening transform. In the late 

1970s, Tappert proposed to solve the rough surface problem 

by transforming rough surface to flat surface (e.g. [4]-[8]). By 

this transformation, free space above the rough surface 

becomes inhomogeneous, but the rough surface becomes flat 

surface. The rough surface problem can then be solved by 

solving inhomogeneous medium with flat surface boundary.  

In recent years, the coordinate transformation has been 

proposed to transforming the medium and the boundary to 

create inhomogeneous and anisotropic medium, in which the 

wave behaves as if it is in free space, thus creating “cloaking” 

and much interest has been generated. We make use of this 

technique to solve our scattering problem.  

The surface flattening transform is equivalent to 

“transformation EM”. It transforms the rough surface into flat 

surface, but the free space above rough surface is transformed 

to inhomogeneous random medium with flat boundary.  

This paper first discusses the surface flattening transform 

(e.g. [1]-[8]) and then present a solution based on modified 

Rytov transform. The relations with transformation 

electromagnetics are discussed (e.g. [9]-[11]). We then present 

time-reversal imaging of objects based on flattening transform 

using multi-static data matrix, time-reversal matrix, the 

eigenvectors and the steering vectors (e.g. [12]-[17]). Some 

numerical examples are given.   

 

II. SURFACE FLATTENING TRANSFORM AND RELATION WITH 

TRANSFORMATION ELECTROMAGNETICS 

 

Let us consider the wave equation in free space.  

 2 2
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The rough surface height is given by ( , )x y . The 

surface is now transformed to the transformed space in (x’, y’, 

z’).  

' ( , ), ' , 'z z x y x x y y     

This will transform the wave equation from (x, y, z) to (x’, 

y’, z’). 

In transformed space with flat surface, the wave equation 

is transformed to  
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Boundary condition: G=0 on flat surface. 

Note that F represents the inhomogeneous medium 

containing the slope  , the radius of the curvature
2 , 

and the magnitude of the slope
2| |  

This formulation is equivalent to the transformation of 

Maxwell’s equation. Several papers have been published for 

solving this equation including path integral, numerical 

simulation and others. However, our purpose is not simply to 

solve this equation, but we need to obtain MCF (mutual 

coherent function) and use the solution to form signal 

processing using time reversal imaging function. 

Relations with transformation electromagnetics are shown 

in Fig. 1 and Fig. 2. Fig. 3 shows Green’s function and 

modified Ryton solution. 

 

 

 

 

 

Fig.1. Relations with transformation EM(Cloaking) 

 

 

 

Fig.2. Relations with transformation EM (Continued) 

 

 

 

 

Green’s Function  

 

 
Fig.3. Green's Function 

III. MCF AND TIME-REVERSAL IMAGING 

 

From the Green’s function shown in Fig.3, we first 

calculate the Mutual Coherence Function (MCF), < 

UaUb*>.For the Time-Reversal imaging, we use the first 

equation in Fig.6, where <GiGj*> is MCF, and Gsi and Gsj are 

the steering vector. MCF contains the effects of the slope, the 

radius of curvature, and (slope)
2
 as fhsown in Fig.3. This is 

then incorporated into theTR imaging function in Fig.6.  

Fig. 4 and Fig. 5 show example of MCF (Mutual 

Coherence Functions) and time-reversal imaging. Fig. 6 

summarizes our recent work on integrating signal processing 

and propagation.  

In Fig.6, we also include the imaging function for TR-

MUSIC (Multiple-Signal-Classification), Capon minimum 

variance, Modified Beam former, and SAR imaging functions. 

They are all expressed using the same notation and the multi-

static data, time-reversal matrix, the eigenvector, and the 

steering matrix.  
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Fig.4. Mutual Coherence Function based on Surface Flattening Transform. 
Point source is located at (z0=3λ, x=0). Vertical MCF is measured at x0=50λ 

as function of z. Horizontal MCF is measured at z0=3λ as function of y. 

A = Transformation matrix 

*Impedance is not changed 
*Anisotropic impedance matched media 
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Horizontal Array Imaging Function 
imaging function phi2 with sigma=0.01
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imaging function phi2 with sigma=0.05
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imaging function phi2 with sigma=0.1
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Fig.5. Time Reversal Imaging Function for Different (rms height). Target is 

located at (x=50 ,z= 3 ,y=0). Horizontal array: image is on x-z plane, y=0.  

Only the horizontal array imaging is shown. N=40 (number for array elements) 

00.5 , 3d z      

 

 

 
 
Fig.6.Propagation and Signal Processing- Integration and Comparison 

New Imaging Techniques (from Ishimaru, A., S. Jaruwatanadilok, Y. Kuga, 

Feb 2012) 
 

 

IV. CONCLUSION 

This paper discusses integration of surface flattening 

transform, propagation, and signal processing for imaging of 

objects near rough surfaces. Relations with transformation 

electromagnetics are also discussed. 

This paper emphasizes the importance of the integrating 

the signal processing and stochastic wave propagation and 

scattering to obtain the imaging of objects in the presence of 

complex clutter environments and presents a unified 

theoretical basis for imaging functions through complex 

random media. 
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