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Abstract—We propose a class of DG methods for the solution
of Maxwell’s equations in the time domain using staggered grid
discretization. The method can be regarded as a generalization
of the well-known FDTD technique. The present approach,
however, applies to high order approximations as well. In
terms of numerical properties, the method shares the energy
conservation property with central flux DG formulations. On the
other hand, the method is optimally convergent as is the case
for dissipative DG methods using upwind fluxes. We perform
a Bloch wave dispersion analysis in the one dimensional case.
It shows that grid staggering allows to eliminate the spurious
mode solutions originating from odd-even decoupling which are
otherwise present in common DG formulations.

I. INTRODUCTION

Discontinuous Galerkin (DG) methods provide a useful
alternative to the conventional FDTD method [1] for the
solution of Maxwell’s equations in the time domain. Several
variants have been proposed and then successfully applied
in the simulation of high frequency electromagnetic field
problems. Among the most prominent techniques are the nodal
upwind DG method [2], the central flux DG method [3], [4],
interior penalty type methods [5] and many others.

The main advantages of DG consist in the high order
accuracy and in the flexible handling of unstructured grids.
On the other hand, its application for electromagnetic field
problems has been challenged by a number of arguments.
Depending on the choice of fluxes, energy may not be con-
served, as is the case for upwind type DG. In addition, the
numerical solution is plagued by spurious modes. These can
be roughly categorized into high frequency and low frequency
solutions [2]. The former manifest themselves in the numerical
dispersion relation of the method resulting in unphysical group
velocities in the large wave number range of the discrete
spectrum. The latter type of spurious modes is related to the
violation of charge conservation and may, therefore, become
apparent in the three dimensional case only [6].

It is important to note that spurious numerical solutions
are absent in the conventional Yee-FDTD method. This is
due to the fact that Yee’s scheme operates on a pair of
spatially staggered grids. Contrary to this, it is well known
that applying simple central differencing on non-staggered

grids will again give rise to spectral pollution by unphysical
solutions; a phenomenon which is most commonly known as
odd-even decoupling [7], [8]. The origin of these solutions
is the same as that of the high frequency spurious modes of
DG. Thus, it appears natural to seek a modified DG method
using staggered grids such that at least some of the unphysical
solutions of the standard approach are eliminated.

This idea has already been developed for the acoustic
wave equation in two and three dimensions by Chung [9],
[10] who proved stability and optimal convergence for these
cases as well. The aim of the present paper is to provide a
suitable formulation of the DG method on staggered grids
for Maxwell’s equations. Furthermore, in the paper a spatial
dispersion analysis using the Bloch wave ansatz is performed
which reveals the absence of spurious modes as well as the
better numerical properties of the staggered grid approach
compared to conventional DG formulations.

II. THE DG METHOD

We consider pure electromagnetic wave propagation prob-
lems in absence of free sources. Maxwell’s equations in this
case read:

∇ ·D = 0,
∂D

∂t
−∇×H = 0, (1)

∇ ·B = 0,
∂B

∂t
+∇×E = 0, (2)

where E, H are the electric and magnetic field intensities,
respectively, and D, B the corresponding flux densities. For
linear, isotropic and non-dispersive media, the flux densities
are defined by constitutive relations as, D = εE and B =
µH , where ε and µ are the dielectric permittivity and magnetic
permeability of the medium.

Let a partition of the computational domain, Ω, into N
subdomains Ωn (colloquially called mesh elements) be given
such that Ω =

⋃N
n=1 Ωn. The DG method is then derived as

in the standard Finite Element Method (FEM) by seeking a
numerical solution of (1, 2) for the electric and magnetic field
vectors in the finite dimensional approximation spaces, V E

h
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and V H
h , respectively, in the form

Eh =

dim(V E
h )∑

1

Ejϕ
E
j , Hh =

dim(V H
h )∑

1

Hjϕ
H
j , (3)

where ϕE
j and ϕH

j are vector basis functions in the corre-
sponding approximation spaces. In contrast to the FEM, the
DG method does not impose continuity conditions on the
solution. Rather, V E,H

h = {ϕE,H
j ∈ [L2]3} represent dis-

continuous approximation spaces, where each basis function,
ϕE,H

j , is associated with a single mesh element, Ωn, such that
it is piecewise continuous within the element and vanishes
identically outside of it. With these assumptions, the Galerkin
formulation is: find (Eh, Hh) such that∫

Ωn

ϕH
i µḢhdΩ = −

∫
Ωn

Eh∇×ϕH
i dΩ +

∫
∂Ωn

(n×E∗
h)ϕH

i dΓ,∫
Ωn

ϕE
i εĖhdΩ =

∫
Ωn

Hh∇×ϕE
i dΩ−

∫
∂Ωn

(n×H∗
h)ϕE

i dΓ,

∀ϕE
i ∈ V E

h , ∀ϕH
i ∈ V H

h and n = 1, . . . , N . The formulation
breaks into N blocks of equations, with each block corre-
sponding to a subset of basis functions with compact support
on a single mesh element, Ωn. As an important consequence,
the mass matrices of the DG method are block-diagonal.
Thus, explicit time stepping can be applied in time domain
simulations resulting in a numerically more efficient scheme
than, e.g., the FEM (cf. [11] and references therein).

Since the approximations are discontinuous at element inter-
faces, ∂Ωn, the surface integral terms in the above equations
need to be specified. A number of DG variants can be obtained
by selecting different types of so called numerical fluxes for
these terms. We recall two of them which we will need for
comparison purposes in the following:
i) The central flux approach is defined by (cf. [3], [4]),

n×E∗
h =

1

2
n× (E−

h + E+
h ), (4)

n×H∗
h =

1

2
n× (H−

h + H+
h ), (5)

where (E−
h , H

−
h ), (E+

h , H
+
h ) are the interior and exterior

field approximations at the interface ∂Ωn of Ωn.
ii) The upwind flux approach is [12],

n×E∗
h =n×(Y +E+

h +n×H+
h ) + (Y −E−

h −n×H
−
h )

Y − + Y +
, (6)

n×H∗
h =n×(Z+H+

h −n×E+
h ) + (Z−H−

h +n×E−
h )

Z− + Z+
, (7)

where Z =
√
µ/ε is the wave impedance and Y = 1/Z the

wave admittance of the medium.

A. Bloch wave analysis

In order to illustrate the idea, a spatial dispersion analysis
is performed for the two flux approaches presented above
in the one dimensional case. For the two electromagnetic
field components a modal approximation with scaled Legendre

polynomials as basis functions is applied (cf. [3], [4]). Then,
following the derivations in [13], a Bloch wave ansatz is
introduced which reduces the formulation to an eigenvalue
problem in the fundamental element. The solutions of this
equation provide the dispersion relation between frequency,
ω, and wave number, k, for a given mesh step h.

Figure 1 shows the resulting dispersion curves in the first
Brillouin zone for the central flux approach. Approximation
orders P = 0, 1, 2, 3 are used with P = 0 corresponding to
the lowest order case with piecewise constant basis functions.
The dispersion curves form a band structure with P+1 bands.
Each of the bands contains two branches representing the two
possible propagation directions of a Bloch wave. For P = 0
only an acoustic band exists. For higher approximation orders,
optical bands appear describing wave propagation above the
Nyquist sampling limit of the grid.
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Fig. 1. Dispersion curves of the central flux DG approach for approximation
orders P = 0, 1, 2, 3, from top-left to bottom-right, respectively.

For compactness, the dispersion curves of the upwind flux
method are shown in Fig. 2 for P = 0, 1 only. The numerical
frequencies in this case are complex. Thus, this approach is
dissipative with the damping rate γ given by the imaginary
part of ω. Note that the real parts of the dispersion curves
for P = 0, 1 coincide with those of the central flux approach.
This is, however, not necessarily the case for P > 1.

By close inspection of Fig. 1 and 2, it can be observed that
the group velocity along a given dispersion branch may change
sign. This is most clearly seen in both cases for P = 0 where,
e.g., a wave propagating in the positive direction (ω/k > 0)
features a negative group velocity for |hk| > π/2. Another
way at looking at it is the following. For every fixed frequency,
the dispersion graphs predict four possible waves. Two of
them describe physical propagation; the other two are spurious
numerical modes. This phenomenon corresponds exactly to
the odd-even decoupling which has been long known for finite
difference schemes on non-staggered grids [7], [8]. The present
analysis demonstrates that the same type of spurious modes
appear also in the DG method. For high order approximations,
the spurious modes are eventually found in the optical bands
and thus shifted towards higher wave numbers. However, they
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Fig. 2. Dispersion curves of the upwind flux DG approach for approximation
orders P = 0, 1 (top P = 0; bottom P = 1).

are always present in the spectrum. In the upwind flux case, the
spurious part of the spectrum is heavily damped. This can be
seen as an advantage of the upwind flux approach compared to
the central one. This, however, comes at the price of numerical
dissipation which is not desirable in many electromagnetic
field applications as well.

III. THE DG METHOD ON STAGGERED GRIDS

Following the analogy with finite difference methods, the
occurrence of odd-even decoupling can be avoided by intro-
ducing spatially staggered grids for the allocation of electric
and magnetic field unknowns, respectively. For the sake of
simplicity, only the one dimensional case will be considered
in th following. The proposed allocation scheme is illustrated
in Fig. 3. The piecewise approximation for the electric field
component is sought as a piecewise continuous function within
every primary grid cell, Ωi = (xi, xi+1), with discontinuities
located at the grid nodes. The magnetic field component is
approximated as a piecewise continuous function within every
dual grid cell, Ω̃i = (xi−1/2, xi+1/2), with discontinuities
located at the primary cell centers.

-1 -1 2 +1 2 +1

Fig. 3. Field allocation on the primary and dual cells of the staggered grid.

Note that the approximation for E in Ωi contains a kink
at the cell center, xi+1/2, which is the exact position where
the magnetic field component becomes discontinuous. Vice
versa the approximation for H in Ω̃i kinks at xi where E

is discontinuous. This is to ensure that the regularity of the
approximations is consistent with Maxwell’s equations (1, 2)
where electric and magnetic field components are related to
each other by spatial derivatives.

A possible choice for the basis functions which generates
this kind of approximation is shown in Fig. 4. In the piecewise
linear case and, e.g., for the electric field component, three hat-
like basis functions associated with the two nodes and with
the midpoint (dual node) of the primary cell, respectively, are
used. The quadratic case is obtained by adding two shifted
quadratic Legendre polynomials with compact support in the
left-half and right-half of the primary cell, respectively. High
order complete approximations can be constructed hierarchi-
cally in a similar manner by adding higher order truncated
polynomial functions with zero-crossing at the dual node in
each of the two halves of the primary cell. The approximation
for the magnetic field component is performed analogously in
the dual grid cells. Note that, as a first consequence of the
staggered grid approach, a total of 2P + 1 degrees of freedom
per field component and element are required instead of the
P + 1 used in the standard DG method.
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Fig. 4. Left: piecewise linear approximation in the unit cell using three hat-
like nodal basis functions. Right: piecewise quadratic hierarchic approximation
with five basis functions.

The Galerkin equations in the staggered grid case are,∫
Ω̃n

ϕH
i µḢhdΩ = −

∫
Ω̃n

Eh∇×ϕH
i dΩ +

∫
∂Ω̃n

(n×E∗
h)ϕH

i dΓ,∫
Ωn

ϕE
i εĖhdΩ =

∫
Ωn

Hh∇×ϕE
i dΩ−

∫
∂Ωn

(n×H∗
h)ϕE

i dΓ,

the only difference to the standard DG method being that
elemental integrals in Faraday’s law are performed over dual
grid cells, Ω̃n. Since dual cell interfaces, ∂Ω̃n, coincide with
the midpoints of primary cells, the electric field there is
continuous. Similarly, the magnetic field traces on primary
cell interfaces, Ωn, appearing in Ampere’s law are uniquely
defined. A natural choice for the numerical fluxes is then
obtained by setting

n×E∗
h = n×Eh, n×H∗

h = n×Hh. (8)

These fluxes may be considered as a special case of (4, 5) for
continuous interface fields. As in the case of DG with central
fluxes, the skew-symmetric structure of Maxwell’s equations
is preserved. Thus, the method is conservative.

It is, however, possible to employ an upwind flux for the DG
method on staggered grids as well. Using the fact that electric
field components are discontinuous at primary cell interfaces
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and magnetic field components are discontinuous at dual cell
interfaces the Riemann solution (6, 7) takes the form

n×E∗
h = n×Eh + n× n× H+

h −H−
h

Y − + Y +
, (9)

n×H∗
h = n×Hh − n× n× E+

h −E−
h

Z− + Z+
. (10)

This approach, obviously, results in a dissipative scheme since
it includes in the formulation penalty terms involving the
tangential field jumps at element interfaces.

A one dimensional Bloch wave analysis can be performed
analogously to the standard method. For this purpose, only
the conservative scheme with fluxes defined in (8) will be
considered. Figure 5 shows the resulting spatial dispersion
curves in the first Brillouin zone for P = 0, 1, 2, 3. Again
a band structure is obtained with pairs of dispersion branches
corresponding to plane waves propagating in the positive and
negative directions, respectively.
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Fig. 5. Dispersion curves of the DG method on staggered grids using the
conservative fluxes (8) for approximation orders P = 0, 1, 2, 3 from top-left
to bottom-right, respectively.

A number of important observations can be made. First,
the dispersion curves for a piecewise constant approximation
are identical with those of the FDTD method. In fact, the two
methods are algebraically equivalent. Thus, the FDTD method
can be considered as special case of DG on staggered grids
for lowest order approximation with P = 0.

Second, all dispersion branches represent monotonic func-
tions of frequency vs. wave number. Thus, group and phase
velocities point in the same direction. In other words, for every
frequency solution there exist exactly two waves propagating
in opposite directions. Therefore, the DG method on staggered
grids does not support spurious modes resulting from odd-even
decoupling as is the case for non-staggered DG.

Third, the spectral range for plane wave solutions, in terms
of the scaled wave number, is hk ∈ [−(2P + 1)π, (2P +
1)π] as compared to hk ∈ [−(P + 1)π, (P + 1)π] for non-
staggered DG. Thus, the DG method on staggered grids can
handle shorter wave length solutions for the same mesh step,

h. This is a direct consequence of the larger number of degrees
of freedom used in the formulation.

Finally, the staggered grid approach shows a substantially
smaller dispersion error than the two standard DG methods.
This can be more easily observed in the P = 0 case for wave
numbers close to the grid sampling limit. As can be seen in
Fig. 1 and 2, the phase velocity in the non-staggered case
drops to zero for hk = ±π. In the staggered grid case (cf.
Fig. 5), the phase error is much smaller, even at the cut-off
wave number where it reaches its maximum.

IV. CONCLUSIONS

A high order DG method on staggered grids for Maxwell’s
equations is introduced. The scheme is constructed by applying
a special approximation with piecewise continuous basis func-
tions defined in the primary and dual grid cells, respectively.
We have investigated the properties of the method in the one
dimensional case from the point of view of numerical disper-
sion using Bloch wave analysis. It shows that the staggered
grid approach allows to eliminate spurious solutions resulting
from odd-even decoupling. The method is more accurate than
conventional DG. This, however, comes at the price of a
larger number of degrees of freedom which is required by
construction in the staggered grid formulation.
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