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Abstract—The effective permittivity of the one-dimensional
periodic structure is examined using the reflectance and trans-
missivity obtained by the FDTD method. By using the reflectance
and transmissivity by the FDTD method, the effective permittivity
of the dielectric slab, which has the same reflectance and
transmissivity with that of periodic structure, is obtained by using
the transcendental equation. Also, the effective permittivity is
calculated by Rytov approximation, and the range of application
and the validity of the effective permittivity are shown by
comparing the Rytov approximation with the approximation
obtained by the FDTD method.

I. INTRODUCTION

The scattering problem from the periodic structure is one of
the important and basic issues of the electromagnetic theory,
and has been investigated from the theoretical and numerical
viewpoints [1]-[3].

So far, the techniques to analyze the scattering properties
of periodic structures have been proposed. However, since
these techniques are using complex calculations and special
functions, these are not necessarily handled always easily. For
the random media, the effective index is important to examine
the scattering properties statistically [4]. Since the periodic
structure is generally complex, the structure which replaces the
periodic structure with the slab has been proposed in order to
approximate the electromagnetic wave scattering problem and
various methods to obtain the effective permittivity have been
proposed [5]-[7]. The effective permittivity of the periodic
layer which consists of two dielectrics has been developed
and derived the transcendental equation relating the effective
permittivity of the periodic structure [8].

In this paper, the effective permittivity of the one-
dimensional periodic structure is examined numerically using
the FDTD method [6], [9]. At first, the reflectance and
transmissivity from the one-dimensional periodic structure is
obtained by the FDTD method. Then, the effective permittivity
of the dielectric slab, which gives the same reflectance and
transmissivity as those of the periodic structure, is obtained by
using the transcendental equation. We compare the effective
permittivity of various shapes of the grating, which is obtained
by the above procedure, with those by the Rytov approxima-
tion [7], and show the validity of the present procedure in order

to obtain the effective permittivity of the one-dimensional
periodic structure.

II. FORMULATION

In this section, the procedure to obtain the effective per-
mittivity of one-dimensional periodic structure is expressed. It
is assumed that the incident plane wave with incident angle
6; is polarized along the z-axis, which corresponds to an E-
Polarized wave. At first, the reflectance and transmissivity
from the periodic structure are calculated by the FDTD method
[9]. After that, the periodic structure is replaced with the
homogeneous dielectric slab with the effective permittivity. In
order to obtain the effective permittivity, the reflectance and
transmissivity from the dielectric slab with the thickness d and
the refractive index n; is calculated. The slab is placed in a
background medium with the refractive index n;. For these
situations, the reflectance Ry, and transmissivity 7y, can be
obtained as follows:
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where R, is the reflectance at each boundary and is given by

2
R |cos 0, — \/n2 —sin’ 6;
" cos 0; + \/n? — sin 6; .

The phase difference 6 is expressed by

5 — 4’;’;2‘1\/ n2 — sin’ 6 (4)

where A is the wavelength of the incident wave in vacuum,
and n = ny/ny is the relative refractive index.

In this paper, the effective permittivity can be obtained by
using the following transcendental equations:

f(€err) = Rian(€err) — RrpTD = 0, Q)
f(€err) = Tgap(€err) — Trprp = 0, (6)

3)
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where Rrpprp and Trprp are the reflectance and transmissivity
which are calculated by the FDTD method.

On the other hand, consider one-dimensional periodic struc-
ture with rectangular dielectrics with the thickness d and
periodically changing refractive index ny, and ny; (n;, < np;).
The effective refractive index of this structure can be expressed
by the following relationship using Rytov approximation [7]:

fA
A /nlzu. — nsztan {7171 /n%i — ”gff%
1- 1A
=—\/n} — ngfftan [n. /n? — ngﬁ»%} 7

where A is the grating period and f is the volume fraction.

III. NUMERICAL RESULTS

In this section, the effective permittivity of three kinds of the
structures such as the rectangular cylinders, circular cylinders,
and equilateral triangular cylinders is examined by using the
procedure in the previous section. The wavelength is assumed
to be 1.55um, and the angle of the incidence is 6; = 0. The
relative permittivity of the three kinds of the periodic structures
is set as & = 2.0. The cell size for the FDTD calculation is
Ax = Ay = A9/200 in the case of the rectangular and circular
cylinders. For the equilateral triangular cylinders, the cell size
is respectively, Ax = Ay = Ay/400. The period is A = 0.54.

In what follows, the relative effective permittivity properties
of three kinds of the structures are examined from the view-
points of the volume fraction and the normalized frequency.
The relative permittivity of the background is assumed to be
free space.

A. Case of rectangular cylinders
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Fig. 1. Periodic structure of rectangular cylinders.

Figure 1 shows the geometry of the reflection from the
rectangular cylinder. d is the thickness and w is the width
of rectangular cylinder (d = w). The thickness of equivalent
dielectric slab is d.

Figure 2 shows the relative effective permittivity for the
volume fraction. The symbols &g and &.rr mean the
relative effective permittivity determined from reflectance and
transmissivity of the periodic structure, respectively. “Rytov’s
approximation” indicates the relative effective permittivity by
using Eq. (7). From this figure, it is found that the properties
of the relative effective permittivity €,r¢g and &7 are good
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Fig. 2.
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Relative effective permittivity for rectangular cylinders periodic

agreement with the results by the Rytov’s approximation. This
is because the derivation of Rytov’s approximation is based on
reflection from the rectangular dielectric cylinders.

B. Case of circular cylinders
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Fig. 3. Periodic structure of circular cylinders.

Figure 3 shows the geometry of the reflection from the
circular cylinders with the radius a. The thickness of equivalent
dielectric slab is the same as the diameter of the cylinder 2a.

Figure 4 shows the relative effective permittivity for the
volume fraction. From this figure, it is found that the relative
effective permittivity &¢gr and €y can approximate with
sufficient accuracy by Rytov’s approximation to about 0.35
volume fraction. Also, the Rytov’s approximation is not good
agreement with the results obtained by the present procedure
when the volume fraction is 0.35 or more. This is because
Eq. (7) is derived by using the reflection from the rectangular
dielectric cylinders, and the difference between the cross
sections and shapes of the structures affect the results as
the volume fraction increases. In addition to this, Rytov’
approximation is satisfied under the condition /€-d/Ay < 1
where d is the distance. Around the volume fraction 0.45, the
effective permittivity is discontinuous, because the transcen-
dental equation does not have the solution around &7 ~ 2.
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Fig. 5. Relative effective permittivity for circular cylinders for the normalised
frequency A/Ap for 0.31 of the volume fraction.

The relative effective permittivity for the normalized fre-
quency for 0.31 of the volume frequency is shown in Fig. 5.
It is found that the discontinuous point exists around A/Ay =
0.71. This is because the transcendental equation does not have
the root and jump to the next point around this frequency.
The reason why this phenomenon appears is now under the
examination.

Figure 6 shows the reflectance for the normalised frequency
A/ for 0.31 of the volume fraction. The normalized radius is
a/A =0.2. The solid line indicates the reflectance obtained by
the Method of Moments [10]. It is seen that the reflectance,
which is calculated using the effective permittivity, is good
agreement with that obtained by MoM by 0.6 or less. In
addition to this, the reflectance around A/Ay = 0.71 changes
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Fig. 6. Reflectance from the periodic structure of the circular cylinders for
the normalised frequency A/Ag. for 0.31 of the volume fraction

smoothly although the relative effective permittivity is discon-
tinuous as shown in Fig. 5.

C. Case of equilateral triangular cylinders
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Fig. 7. Periodic structure of equilateral triangular cylinders.

Figure 7 shows the equilateral triangular cylinder with the
equal side d. The thickness of equivalent dielectric slab is
V3d/2.

Figure 8 shows the relative effective permittivity for the
volume fraction. From this figure, it is found that the relative
effective permittivity &¢gr and €y can approximate with
sufficient accuracy by Rytov’s approximation to about 0.25
volume fraction. Also, we can find the discontinuous point
appears around 0.35 of the volume fraction as the same as the
case of the circular cylinders.

Figure 9 shows the reflectance for the volume fraction. From
this figure, it is found that the reflectance around 0.35 of
the volume fraction changes smoothly although the relative
effective permittivity is discontinuous as shown in Fig. 8.

IV. CONCLUSIONS

In this paper, the effective permittivity of the one-
dimensional periodic structure has been examined numerically
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Fig. 8. Relative effective permittivity for the periodic structure of equilateral
triangular cylinders.
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Fig. 9. Reflectance for the volume fraction from the periodic structure of
equilateral triangular cylinders.

by the FDTD. The effective permittivity for the volume
fraction and the normalized frequency was calculated and
was compared with that obtained by Rytov approximation in
order to check the validity of the presented procedure. The
rectangular cylinder was well approximated by the Rytov’s
approximation, although other cylinders could not be approx-
imated since the derivation of the Rytov’s approximation is
based on the rectangular cylinder. In addition to this, it is
seen that the relative effective permittivity of the structures
considered here is discontinuous at the certain point of the
volume fraction. However, the reflectance by using this relative
effective permittivity is continuous. The elucidation of the
physical reason for this property is the future work. The
effective permittivity for the multilayered structure and the

effect of the angle of incidence are also the future work.
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