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Abstract—We present a novel beam-based inverse scattering
algorithm within the Born approximation, utilizing data mea-
sured by arrays of point sources and receivers (transducers).
In this approach, the measured point-source/receiver data is
first converted into a beam-domain data where the source
and the receiver arrays are described by phase-space sets of
beam waves. The beam-domain data describes the scattering
amplitudes “measured” by the receiver beams due to each
source beam. In the new inversion approach presented here,
the unknown medium is spanned using a basis of beam-waves,
and the expansion coefficients are determined by multiplying
the beam-domain data with pseudo inverse of the correlation
matrix of the beam basis function. The scheme benefits from
the sparseness of the beam-domain data and from the spatial
localization of the beam spanning functions.

I. INTRODUCTION AND SUMMARY

We consider a beam approach for inverse scattering of
objects embedded in a background medium. The data is
measured by an array of wide-angle (point-like) receivers due
to an array of independent wide-angle sources. We consider a
monochromatic illumination, although the method may readily
be extended to the ultra-wideband (UWB) regime. The inver-
sion is performed within the Born approximation [1].

In the beam approach the data is transformed into the
beam domain, and the functions used to expand the object are
defined directly in the beam domain. The beam approach has
been introduced in [2] together with two imaging algorithms:
a backpropagation and correlation algorithm and a MUSIC
imaging algorithm.

The present work is based on the same data transformation,
but it introduces an alternative inversion approach that utilizes
the beam waves as basis functions to span the object. It
is shown that within the Born approximation, the beam-
domain data represents the projections of the object onto the
spanning beam-set. The expansion coefficients are recovered
by a filtering type procedure that involves the calculation and
(pseudo) inversion of a correlation matrix of the spanning
beam functions. This strategy has been presented for general
kernels [3] and then for Green’s functions kernels [4], [5].

It is shown that the beam approach has certain advantages
over the Green’s functions approach, mainly due to fact that
the beams are localized in space. In the data domain, this
implies that the beam-domain data is sparse since it is localized
around the source-receiver beam pairs that intersect near the
object (Fig. 1). In the processing phase, this localization
enables spatial filtering and focusing of the data since one

Fig. 1. Physical configuration: The 1D source and receiver arrays of point-
like transducers are located parallel to the y-axis. The source and receiver
fields are converted into the beam domain, schematized by the wide arrows.
The scatterers are marked in green. The only non-negligible terms in the
beam-domain data matrix are those corresponding to source-receiver beam
pairs that intersect near the targets.

may a priori eliminate source and receiver beams that do not
illuminate a particular domain of interest (DoI). It follows that
the number Nb of beams used to span the object is small
relative to the number of transducers in the source/receiver
arrays, leading to a significant reduction in the numerical
complexity of the algorithm since the correlation matrix that
has to be calculated and inverted has N4

b elements.

II. PHYSICAL CONFIGURATION AND THE BORN
APPROXIMATION OF THE MEASURED DATA

We consider the 2D configuration in Fig. 1 where an
unknown object O is located in a finite support domain V
in the (x, y) plane. The medium is probed by P independent
sources at αp = (xαp , yαp), p = 1, . . . , P , and Q receivers at
βq , q = 1, . . . , Q. For simplicity it is assumed that the sources
and receivers are point-like with omni-directional radiation
pattern, and are arranged in linear equi-spaced arrays parallel
to the y-axis. These arrays can be on two opposite sides of
the target domain, as schematized in Fig. 1, or be on the same
side (representing transmission or reflection mode imaging,
respectively). Henceforth, Constituents associated with the
source or the receiver arrays will be tagged by subscript α
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or β, respectively. Furthermore, a harmonic time-dependence
e−iωt is assumed and suppressed throughout.

The scattering data is arranged in a data matrix K [Q×P ]
such that Kqp is the field recorded at the q-th receiver due to
the p-th source excited at a unit amplitude.

The object is characterized by the contrast function O(r) =
n2(r) − n2

0(r) where n(r) is the object’s refractive index
and n0(r) is the known background. The weak scattering
approximation of the data matrix is given by

K̃qp ≈ k2

�

V

d2rG0(βq, r)O(r)G0(r,αp) (1)

where G0 is the Green’s function in the background and
k = ω/c is the free space wavenumber. Here and henceforth
an over-tilde tags expressions within the Born approximation,
assuming that O � n2

0 and kOD � 1 where O and D
are measures of the magnitude and of the support of O(r).
Defining the “steering vectors”

gα(r) =
�
G(r,α1), ..., G(r,αNα

)
�t (2a)

gβ(r) =
�
G(β1, r), ..., G(βNβ

, r)
�t

, (2b)

with the superscript t denoting matrix transpose, we may
express (1) in a more compact outer product format

K̃ ≈ k2

�

V

d2r gβ(r)O(r)gt
α(r). (3)

III. THE UWB PHASE-SPACE BEAM BASIS

In this section we present the data transformation into the
beam domain. We consider the UWB phase-space beam-set of
[6]. These beams emerge from a discrete set of points ym in
the source/data domain and in a discrete set of directions φn

associated with the wavenumbers kyn = k sinφn. The set is
structured upon a Cartesian lattice in the (y, ky) phase-space
such that (ym, kyn) = (mȳ, nkξ̄y , with (m,n) ∈ Z2. The unit-
cell dimensions (ȳ, ξ̄y) are chosen to provide an overcomplete
coverage of the phase space such that kȳξ̄y = 2πν where
ν < 1 is the so called overcompleteness parameter. For UWB
applications, (ȳ, ξ̄y) are chosen to be frequency independent.

Using this overcomplete phase-space set of beams, the field
u(r) due to any source distribution along the y-axis may be
expressed as

u(r) =
�

µ

aµBµ(r), µ = (m,n) ∈ Z2 (4)

where Bµ(r) are the beam propagators, aµ are the expansion
coefficients (the beam amplitudes), and µ is an index. The
phase space beam summation representation in [6] has the
following favorable properties:

(i) The beam lattice defined by the initiation points and
directions (ym,φn) is frequency independent. This implies that
only a single set of beams needs to be tracked in the medium
and then used for all frequencies. Specifically, it is sufficient
to track only the beam propagators (or back-propagators) that
pass through the domain of interest (DoI).

(ii) The algorithm utilizes the so called iso-diffracting
Gaussian beams (ID-GB) whose propagation parameters can

be calculated analytically in inhomogeneous media. The ID
parametrization implies that the beamwidth is scaled with
frequency such that the propagation parameters are frequency
independent, so that they need to be calculated only once
and then used for all frequencies. This set of beams, when
judiciously chosen, provides the snuggest beam representation
of the field for all frequencies.

Using the representation in (4), the steering vector g in (2)
may be expressed by the corresponding beam-base vector b(r)
via the matrix transformation

g(r) = Ab(r), b(r) =
�
B1(r), ..., BNb

(r)
�t

, (5)

where Nb is the number of beams needed to describe the
field of the transducers array (i.e., the beam initiation points
typically cover the array). Closed form expressions for the
matrix elements Ap,µ have been derived in [2], [7]. They
depend on the array parameters (the inter-element spacing
d) and of the beam set (the overcompleteness and the beam-
collimation).

In the proposed algorithm, the data is first converted into
the beam domain. We need therefore to find an inverse relation
to (5) in the form

b(r) = Mg(r), (6)

where M is a matrix that can be calculated. It can be
shown that if the elements of b are sufficiently far from the
endpoint of the source array then M ≈ γ0Ā

†, where Ā is the
corresponding sub matrix of A, and γ0 is a constant.

Using the transformation (6), the measured point-
transducers data matrix is converted into the beam-domain data
matrix

Kb = MβKMt
α, (7)

where the subscripts α,β tag the source/receiver matrixes, as
mentioned earlier. Substituting (3) into (7) leads to the weak
scattering model of Kb,

K̃b ≈ k2

�

V

d2r bβ(r)O(r)bt
α(r). (8)

Specifically, the (µβ,µα) element in K̃b is given by

�
K̃b

�
µβ ,µα

≈ k2

�

V

d2r Bµβ
(r)O(r)Bt

µα
(r), (9)

i.e., the field of the µα source-beam that is scattered by
the object and then sensed by the µβ receiver-beam. This
observation implies that Kb is sparse since its elements are
non-negligible only for source/receiver beam-pairs (µβ ,µα)
that intersect near the scattering object. This localization also
enables spatial filtering and focusing of the data, since one
may a priori eliminate rows and columns corresponding to
source and receiver beams that do not illuminate the DoI.

IV. BEAM-BASED INVERSE SCATTERING ALGORITHM
WITHIN THE BORN APPROXIMATION

The inversion approach follows the method used for general
kernels in [3] and for Green’s functions kernels in [4]. here,
however, we use beam-waves kernels.
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For simplicity we re-order the data matrix Kb of (7) as a
data vector kb (for example by taking column after column
from Kb)
�
kb
�
l
=

�
Kb

�
µβ ,µα

, l = 1...LDoI, LDoI = NDoI
α NDoI

β (10)

where NDoI
α,β are the number of source/receiver beams which

pass through the domain of interest (DoI) respectively. Next,
we define the LDoI spanning functions

Fl(r) =

�
B∗

µα
(r)B∗

µβ
(r) if r ∈ V,

0 otherwise.
(11)

Inserting (10) and (11) into (9) yields
�
kb
�
l
=

�

V

d2r F ∗
l (r)O(r) ≡ �Fl(r), O(r)� (12)

which implies that the data matrix expresses the projection of
the object onto the subspace spanned by Fl(r), l = 1...LDoI.

The solution involves only the LDoI � L = (NαNβ)
beam-pairs passing through the object domain V , and the
data vector kb is also truncated to contains only the relevant
LDoI elements. The minimum L2 norm solution of the inverse
scattering problem within the Born approximation is given
therefore as a sum of the Fl(r) functions

Ô(r) =
LDoI�

l=1

clFl(r) = ctF(r), (13)

where c and F are the vector of cl and Fl. Substituting (13)
into (12) leads into the matrix equation

Φc = kb, Φl,l� = �Fl, Fl�� =
�

V

d2rF ∗
l (r)Fl�(r). (14)

The matrix Φ is formed by an overlapping of 4 beams hence
it is sparse and consists only of terms corresponding to beams
passing in the image domain. In contradistinction, the Green’s
functions matrix Π matrix in [4] is both larger and non sparse.

A solution of (14) may expressed in terms of the least square
pseudo-inverse of Φ viz

ĉ = Φ−Ikb, {}−I = Pseudo inverse, (15)

and the object is given by

Ô(r) = (Φ−Ikb)
tF(r). (16)

V. NUMERICAL EXAMPLE

As a first example of this new approach we consider a
2D example with a homogeneous medium and small (point)
scatterers. The data satisfies the Born approximation (no
multiple scattering). Random noise was added to each element
of the data matrix.

Referring to Fig. 2, we consider a 300 elements point-
transducers array located along the y axis with inter-element
spacing d = 1 (black points on the left hand side of the figure).
The wavespeed in taken to be c = 1. We use a single frequency
ω = π, i.e d/λ = 0.5, which is the highest frequency with
no array grating-lobes. The imaging domain is a rectangle of
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Fig. 2. Physical configuration for the numerical example: The same 300
point-transducers array along the y axis is used excitations and receivers (black
dots on the left hand side of the figure). 4 point targets marked with • are
located within the DoI marked by the blue rectangle, while 3 targets are
located outside the DoI. Also shown are the axes of the 17 beams that pass
through the DoI.
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Fig. 3. Physical configuration for the numerical example: Zoom on the
targets domain

size [20λ×25λ], and the DoI is the 7λ×7λ rectangle marked
by the blue rectangle. There are 4 point targets in the DoI
at (x/λ, y/λ) = (146.5,−2), (150, 0), (152, 2), (153.5,−2),
and 3 point targets at (150, 12), (150, 14), (150, 16) outside
the DoI.

Referring to the phase-space beam expansion in [2], [6],
we choose beams with a collimation length b = 300 and
an overcompleteness parameter ν−1 = 2.5. Following the
formulation in [6], one finds that the distance between the
beam initiation points is ȳ = 14.95, yielding 17 initiation
points within the array, and 41 visible spectrum directions φn

for each ym, i.e., a total of Nα = Nβ = 17×41 = 697 beams.
However, only NDoI

α = 17 beams pass within the DoI; their
axes are marked in Fig. 2 with dotted red lines.

We add noise to the data by multiplying the elements of K
by a noise term

Kqp = K0

qp(1 + nc), nc = nr + ini, nr, ni ∼ N (0,σ2
N),
(17)

K0
qp is the noise-free term and nc is a complex noise where
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Fig. 5. |Ô(r)|, No Noise

both nr and ni are normal with zero mean and standard
deviation σN . Thus |nc| has a Rayleigh distribution with mean
σN

�
π/2 and standard deviation σN

�
2− π/2. nc were ran-

domly selected for each element Kqp. We chose a noise level
of σN = 0.0025, corresponding to S/N= 20 log σ−1

N

�
2/π =

50dB. The beam based data matrix is generated using (7).
In Fig. 4 we show the [LDoI × LDoI] correlation matrix Φ

of (14), with LDoI = (NDoI
α )2 = 172. The diagonals pattern

is clearly noted, suggesting that the number of LDoI spanning
functions can be further reduced. Note also that using a similar
approach but with Green’s functions G instead of beams B
requires the calculation of a [P 2×P 2] correlation matrix with
P = 300, which may be prohibitively large.

In Figs. 5 and 6 we depict the images of the objects in the
DoI calculated via (16) using, respectively, noiseless data and
noisy data with S/N= 50dB.

One observes that the algorithm provides good cross-range
resolution at the specified noise level, and even some range
resolution. Clearly, range-resolution in this algorithm requires
UWB data. Note also that targets outside the DoI are weak
since we a priori excluded beams that do not pass in the DoI.
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