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Abstract—3D full vectorial inverse source problems can be
solved by imaging principles. Point spread functions can be used
to estimate the system response of imaging systems to unknown
target objects. Typically, point spread functions are obtained
by numerical simulations. However, this can be computationally
demanding or the result might be inaccurate. In some cases,
an analytical solution which does not have these drawbacks is
also feasible. In this work, new analytical point spread functions
have been derived for two different sets of observation data. The
first set limits the observation data to a narrow angle narrow
bandwidth sector and the second set assumes full spherical
coverage combined with an arbitrary frequency band. The results
have been verified using numerical examples and they can be
employed for system simulations and accuracy investigations.

I. INTRODUCTION

The well-known topic of electromagnetic imaging is, for
example, applied to characterize unknown scattering targets.
Recently, we have shown that imaging is also useful for
solving full vectorial inverse source problems [1]. The quality
of the generated images always depends on many parameters
such as bandwidth, frequency, angular scan range and the type
of the applied reconstruction technique. So even in case of a
correct algorithm, the image does not perfectly resemble the
unknown target. The unwanted deviations can be modeled by
so-called point spread functions (PSFs) [2]–[7]. In this work,
analytical PSFs for full vectorial inverse source imaging are
derived in order to improve insight and to have a better tool
at hand for accuracy checks.

A brief description of full vectorial inverse source imaging
is given in Sec. II, several analytical PSFs are derived in
Sec. III, a numerical verification of the results is carried out
in Sec. IV and conclusions are drawn in Sec. V.

II. FULL VECTORIAL INVERSE SOURCE IMAGING

A frequency invariant source distribution is radiating fields
in a wide frequency band. The fields are observed in the
surrounding volume. The goal is to use these observations
to generate an image of the unknown source distribution. In
the following paragraph, the mathematical expressions for that
purpose are given.

As shown in [1], the approach is applicable both under far-
field and near-field conditions. Due to limited space, only far-
field observations are considered here. The radiated far-fields

read as

E (k) = −jkZF
4π

(
Ī− k̂k̂

)y
J (r, k) e−j(jk·r)d3r

= −jkZF
4π

(
Ī− k̂k̂

)
(2π)

3F−1 {J (r, k)} , (1)

where J denotes the source distribution, k and k = kk̂ denote
the wavenumber and the wavevector, respectively, ZF is the
free-space impedance and the symbols F {•} and F−1 {•}
denote the 3D Fourier transform and its inverse. In a real
application, all data must be sampled appropriately. From the
radiated fields, the image is computed according to

F
{
E (k)

k

}
∝ F

{(
Ī− k̂k̂

)} ◦∗ F
{
F−1 {J (r, k)}

}
, (2)

where the symbol
◦∗ denotes the element-wise convolution

of a dyadic with a vector using the definition of the scalar
product. The right-hand side of the expression emphasizes the
deviations between the true source distribution and its image.
The deviations are caused by the fact that the solution of the
corresponding inverse source problem is not unique [8] and it
can be shown that the generated image corresponds to the
minimum energy solution in case of a frequency invariant
source [9]. The dyadic expression in (2) is generalized for
various acquisition geometries by

P̄ (r) = F
{
M (k)

(
Ī− k̂k̂

)}
= F {M (k)} Ī−F

{
M (k) k̂k̂

}
. (3)

In the following section, this PSF will be solved analytically
for specific choices of M (k).

III. DYADIC POINT SPREAD FUNCTIONS

A. Narrow Angle Narrow Bandwidth Approximation

In many scenarios, field observations are only available in a
narrow angular sector with a small relative bandwidth. Based
on this assumption, an approximate analytical solution for the
PSF can be derived. By defining

M (k) =

{
1 , k ∈ K
0 , k /∈ K

(4)
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with

k = k

cosφ sin θ
sinφ sin θ

cos θ

 ∈ K ⇐⇒
2 |φ− φ0| ≤ ∆φ

2 |θ − θ0| ≤ ∆θ

2 |k − k0| ≤ ∆k

(5)

for θ0 = π
2 and φ0 = 0, the line of sight will be aligned

with the x-axis. Due to the rotational invariance principle of
the Fourier transform [10, pp. 28], the result can be rotated
appropriately to match an arbitrary viewing angle. In this case,
the dyadic PSF in (3) can be expressed as∫ ∆k

2

−∆k
2

∫ ∆φ
2

−∆φ
2

∫ ∆θ
2

−∆θ
2

e−jk·r (k · k− kk) sin θdθdφdk. (6)

By expanding the prefactor and the exponent using a multi-
variate Taylor series of order one with respect to θ, φ and k,
the analytical solution

P̄ (r) = k20 ∆φ∆θ∆k e−jk0x (7) 0 g2 (∆k, r, k0) g3 (∆k, r, k0)
g2 (∆k, r, k0) g1 (∆k, r, k0) 0
g3 (∆k, r, k0) 0 g1 (∆k, r, k0)

 ,

is obtained, where

g1 (∆k, r, k0) = si

(
∆φk0y

2

)
si

(
∆θk0z

2

)
[(

1− j2

k0x

)
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(
∆kx

2

)
+

j2

k0x
cos

(
∆kx

2

)]
, (8)

g2 (∆k, r, k0) =
j

k0y
si

(
∆kx

2

)
si

(
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2

)
[
si

(
∆φk0y

2

)
− cos

(
∆φk0y

2
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, (9)

g3 (∆k, r, k0) =
j

k0z
si

(
∆kx

2

)
si

(
∆φk0y

2

)
[
si

(
∆θk0z

2

)
− cos

(
∆θk0z

2

)]
(10)

and

si (x) =
sinx

x
. (11)

The dyadic PSF is visualized in Fig. 1 using a single y-current
located at the origin, i.e. J (r) = δ (r) ey . In this example, the
parameters were set to

λ ∈ [1 m, 1.5 m] , φ0 = 0, θ0 =
π

2
,∆φ =

π

7
,∆θ =

π

19
. (12)

The visualization is obtained by projecting the maximum
amplitudes onto the faces of a cube. The plot shows that the y-
current causes a strong signal in the y-component and a weak
signal in the x-component. This can be verified by inspecting
the matrix in (7).

More sophisticated results can be obtained by increasing the
order of the Taylor expansions. Since the formulas become
very large, computer algebra systems such as the MATLAB
[11] toolbox MuPAD [12] should be employed. These tools
can solve the integrals and then automatically generate pro-
gram code for the evaluation of the solutions. Tbl. I lists

Fig. 1. Image of a single y-current at the origin for the k-space acquisition
geometry in (5) generated using (7) for the parameters (12) while x, y and z
are measured in wavelengths (λmin).

TABLE I
HEURISTIC COMPLEXITY ESTIMATION (EVALUATED WITH MUPAD) OF

ANALYTICAL SOLUTION OF INTEGRAL IN (6) APPROXIMATED BY
EXPANSION OF PREFACTOR AND EXPONENT IN INTEGRAND UTILIZING
MULTIVARIATE TAYLOR SERIES EXPANSION WITH ABSOLUTE ORDER n

AND WEIGHTING COFFICIENTS wk, wφ, wθ .

Prefactor Exponent Heuristic Complexity
n

[
wk, wφ, wθ

]
n

[
wk, wφ, wθ

]
1 [2, 1, 1] 1 [1, 1, 1] 375
1 [1, 1, 1] 1 [1, 1, 1] 457
1 [1, 1, 1] 2 [2, 1, 1] 2165
2 [1, 1, 1] 1 [1, 1, 1] 2234
3 [1, 1, 1] 1 [1, 1, 1] 14860
2 [1, 1, 1] 2 [2, 1, 1] 16548
4 [1, 1, 1] 1 [1, 1, 1] 56160
3 [1, 1, 1] 2 [2, 1, 1] 69688

parameters which lead to feasible solutions together with a
heuristic complexity estimate of the resulting formulas. The
first and the second row correspond to the solutions given in
[13] and in (7), respectively. An accuracy analysis of a few
selected solutions is given in Sec. IV.

B. Full Scan Range Zero Bandwidth Approximation

Naturally, the image quality increases when more data is
available. Thus, the optimum is attained with full spherical
coverage. For simplicity, only a single frequency should be
considered at first. This setup is accomplished by

M (k) = w (k) =
δ (k − k0)

k2
. (13)

Due to the rotational invariance of the Fourier transform, it is
sufficient to evaluate the integrals solely on the z-axis. Thus,
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Fig. 2. Image of a single y-current for a monofrequent spherical k-space
acquisition geometry generated using (15) for λ = 1m while x, y and z are
measured in wavelengths (λ).

the second term in (3) resolves to

F
{
w (k) k̂k̂

}∣∣∣
r=rez

=

=
4π

(k0r)
3

[
(sin (k0r)− k0r cos (k0r)) (exex + eyey) +((

k20r
2 − 2

)
sin (k0r) + 2k0r cos (k0r)

)
ezez

]
=

4π

(2πk0r)
3

[
(sin (k0r)− k0r cos (k0r)) Ī+((

k20r
2 − 3

)
sin (k0r) + 3k0r cos (k0r)

)
ezez

]
. (14)

Together with the solution of F {w (k)} given in [1], the
dyadic PSF finally reads as

P̄ (r) = F {w (k)} − F
{
w (k) k̂k̂

}
(15)

=
4π

(k0r)
3

[ ((
k20r

2 − 1
)

sin (k0r) + k0r cos (k0r)
)
Ī+((

3− k20r2
)

sin (k0r)− 3k0r cos (k0r)
)
r̂r̂
]
,

where the Cartesian unit vectors in (14) have been replaced by
their spherical counterparts to extend the valid region of the
formula from the z-axis to the whole k-space domain. Fig. 2
depicts a single y-current for monofrequent observations with
full spherical coverage using the PSF in (14). As can be seen,
each Cartesian component in the images contains contributions
from the single current element.

C. Full Scan Range Finite Bandwidth Approximation

In the last subsection, results for monofrequent observations
using full spherical coverage have been derived. In this section,

Fig. 3. Image of a single y-current for a broadband spherical k-space
acquisition geometry generated using (17) for λmin = 1m and λmax = 1.5m
while x, y and z are measured in wavelengths (λmin).

the bandwidth is extended by defining

M (k) = W (k) =

{
1 kmin ≤ k ≤ kmax

0 otherwise
. (16)

The PSF is calculated by applying similar techniques as in the
previous section and reads as

P̄ (r) = F {W (k)} − F
{
W (k) k̂k̂

}
(17)

=
4π

r3

[
(−Si (kr) + 2 sin (kr)− kr cos (kr)) Ī

− (−3 Si (kr) + 4 sin (kr)− kr cos (kr)) r̂r̂
]kmax

kmin

,

where

Si (x) =

∫ x

0

sin t

t
dt. (18)

The result of F {W (k)} can be found in [1], [14] and [15,
p. 324]. The PSF is shown in Fig. 3. When compared to
Fig. 2, the sidelobe level is significantly lower. Note that the
magnification is slightly different in both pictures.

IV. NUMERICAL VERIFICATION

To validate the analytical solutions, the numerical algorithm
in [1] has been employed as a reference. First, the solutions
in Sec. III-A are verified. The scenario from Fig. 1 based on
the parameters in (12) is used. The PSF is evaluated on the
line defined by

x

λmin
= −24, ..., 24,

y

λmin
= 1,

z

λmin
= 1 (19)

using both the numerical algorithm and the solutions in Tbl. I
which are given in rows two and eight. Tbl. I lists solutions
which have been obtained using the narrow angle narrow
bandwidth assumption. The accuracy analysis is presented in
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Fig. 4. Comparison of images generated numerically and by PSFs in Table I
using the scenario in Fig. 1 and evaluated on the line described by (19).

Fig. 5. Comparison of images generated numerically and by PSFs in (17)
using the scenario in Fig. 3 and evaluated on the line defined in (20).

Fig. 4, where the first curve in the plot originates from a very
accurate numerical solution and the second and third curve
represent the error levels of the various analytical solutions.
As can be seen, the solution represented by the second curve is
only accurate around the main lobe for the given parameters.
A higher accuracy is possible with a more sophisticated
analytical approximation as indicated by the third curve.

To validate the analytical solution in (15), the scenario
depicted in Fig. 3 is adopted. The error was analyzed on the
line

x

λmin
= −2.4, ..., 2.4,

y

λmin
= 1,

z

λmin
= 1. (20)

Since the analytical solution is exact, it is used as a reference
in Fig. 5. The two other curves were obtained by varying the
accuracy of the numerical algorithm. It is shown that increas-
ing the accuracy of the numerical algorithm also decreases
the error. Therefore, the analytical solution can serve as a
reference for the numerical algorithm.

V. CONCLUSION

The images generated by full vectorial inverse source imag-
ing can be described using the concept of dyadic point spread
functions (PSFs). In this work, new analytical PSFs have
been derived for specific elementary observation domains. A
validation has been carried out using numerical examples. The
new formulas can be used to simulate imaging algorithms and
hopefully provide new insights into the topic.
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