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Abstract—Complex-source beam diffraction by a wedge is
explored as a function of the beam direction and displacement
from the edge. The complex ray solution is derived and compares
to exact solutions via the the complex multipole expansion and
via the Sommerfeld integral.

I. INTRODUCTION

The complex-source beam (CSB) provides a canonical
setting for rigorous study of beam diffraction phenomena as
well as of various solution techniques [1], [2]. In the present
work we explore the field of a 2D CSB scattering by a wedge
as a function of the beam direction and displacement from
the edge. We derive an asymptotic solution via complex ray
tracing (CRT) [3] and complex-ray GTD [4], and also calculate
the exact solution via the the complex multipole expansion
and via the Sommerfeld integral. It is interesting to note that
the corresponding 3D problem for a short-pulse excitation
has a closed form solution [5]. The present work extends
the analysis in [6] where we only considered the complex
multipole solution for a CSB hitting exactly at the edge. The
latter result were extended to 3D cone diffraction problem in
[7]. The long term goal of this research is the derivation of
scattering and diffraction coefficients for a beam impinging
on a tip of a cone, as a function of the beam parameters:
the collimation, direction and the displacement from the tip.
The principles of our approach are demonstrated here in the
context of the 2D case.

II. PHYSICAL LAYOUT

Referring to Fig. 1, we consider an acoustically soft wedge
whose faces are at φ = 0 and φ = ϕ. The incident beam is
modeled by as radiation from a point-source located at the
complex coordinate point

rc = R0 + ib (1)

where R0 = (R0,φ0) and b = (b,φb) are real vectors
expressed here in polar form. It can be shown that in the
real coordinates space, the field generated by source is a CSB
beam that emerge from the real point R0 in the direction of
b (Fig. 1). R0 is the center of the beam waist, while b = |b|
is the beam collimation length (Rayleigh length), and φb is
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Fig. 1. CSB and wedge geometry. The double arrow schematizes the CSB
emerging from the source disk [2] which is centered at R0. The small angle
δb defines the beam displacement from the edge.

the beam direction. Henceforth we denote φb = π + φ0 + δb,
so that δb represents the beam displacement from the edge. A
time-harmonic dependence e−iωt is assumed and suppressed
throughout.
The Cartesian coordinates of the complex source-point are

xc = R0 cosφ0 + ib cosφb (2a)
yc = R0 sinφ0 + ib sinφb (2b)

where substituting φb = π+φ0+ δb and assuming δb � 1 we
obtain the first order approximation

xc ≈ (R0 − ib) cosφ0 + ibδb sinφ0 (3a)
yc ≈ (R0 − ib) sinφ0 − ibδb cosφ0 (3b)

If the beam hits near the edge (δb � 1) one finds from (3) to
first order in δb that rc = R0−ib and φc = φ0−ibδb/(R0−ib).

III. 2D MULTIPOLE EXPANSION

The exact solution of the field may be expressed in terms of
the multipole expansion representation of the complex source
Green’s function for a soft (Dirichlet) wedge [8, Eq. 6.5.12]

ψ(r) =
iπ

ϕ

∞�

�=1

Jν�
(kr<)H

(1)

ν�
(kr>) sin(ν�φ) sin(ν�φc) (4)
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where (rc,φc) are the complex source polar coordinates in
(2), ν� = �π/ϕ, (r<, r>) = (rc, r) or (r, rc) if �{rc} ≶ r,
respectively, Jn and H

(1)
n are Bessel functions and Hankel

functions of the 1st kind, respectively, and k = ω/c is
the wavenumber. Note that the convergence of the multipole
series depend on the magnitude of the argument of the Bessel
functions.

IV. 2D SOMMERFELD INTEGRAL SOLUTION

The spectral integral solution for the 2D Green’s function in
the presence of a perfectly conducting wedge is derived in [8],
Secs. 6.3a and 6.5a and 6.5c. Here we present the extension
of this integral to the complex source case, obtaining from [8,
Eq. 6.3.5]

ψ(r) =
−1

8π

� i∞

−i∞
dwH (1)

0 (kχ)A(φ,φc;w) + ψCRT(r), (5)

where χ =
�

r2 + r2c + 2rrc cosw and ψCRT is the complex
ray field (see Sec. V-A). A is defined in general in [8],
Eq. 6.3.6. For the Dirichlet boundary conditions it is given
in several alternative forms in Eqs. 6.5.4–6.5.9 there (see also
discussions in [9, Eqs. (3)–(4)] and [5, Eqs. (13)]). Specifically,
we use here −2A(φ,φc;w) → D(φ− w,φc) where

D(φ− w,φc) =
−(2π/ϕ) sin(π2/ϕ)

cos(π(φ− w − φc)/ϕ)− cos(π2/ϕ)

− −(2π/ϕ) sin(π2/ϕ)

cos(π(φ− w + φc)/ϕ)− cos(π2/ϕ)
(6)

This form reduces to the diffraction coefficient in (9).
In order to understand the Sommerfeld integral (5) and to

perform it properly, on needs to understand the behavior of
the complex poles in D. For simplicity, let us assume in (1)
that φ0 < π. The relevant poles of the first and second terms
in (6) are given then by w1,2 = φ∓ φc − π. It follows that if
the observation point is located in the “shadow” zone of the
complex direct rays in Sec. V-A(1) or of the complex reflected
rays in Sec. V-A(2), then w1,2 are located, respectively, on the
right hand side of the imaginary w axis. Thus, the integration
contour in (5) should be taken such that w1 is located on
its left or right hand side for points in the “lit” or “shadow”
zones of the direct complex rays, respectively, and likewise w2

is located on its left or right hand side for points in the “lit”
or “shadow” zones of the reflected complex rays, respectively.
The residue contributions of w1,2 as they cross the integration
contour from left to right cancel exactly the direct and reflected
ray contributions in ψCRT of (5).
Note that by extracting the complex ray field ψCRT ex-

plicitly, the Sommerfeld integral in (5) may be regarded as
the “diffracted field” associated with the complex ray field.
Actually, it provides a uniform representation to the non-
uniform complex ray diffraction in (9).

V. COMPLEX RAY TRACING AND COMPLEX RAY GTD

We start by extending the two faces of the wedge to the
complex coordinate domain. Face 1 is described by (x, y) =
(ξ1, 0) where ξ1 is a complex coordinate. Likewise, face 2

is described by (x, y) = (ξ2 cosϕ, ξ2 sinϕ) where ξ2 is also
complex. The two planes intersect at the origin where ξ1,2 =
0, which defines the edge of the wedge. We therefore define
faces 1 and 2 of the wedge by adding the conditions �{ξ1,2} >
0.
For calculation purposes it is convenient to introduce planes

1, 2 as the planar extensions of faces 1, 2. These planes are
defined by the relations above but without the restriction on
�{ξ1,2}.

A. Complex Rays

Following [3], a complex ray that emerges from a complex
point r0 is defined by

r(s) = r0 + s
◦
s (7)

where
◦
s = (

◦
sx,

◦
sy) is the complex ray direction such that

◦
s2x +

◦
s2y = 1, and s is the complex distance parameter along

the ray. The positive ray direction is defined by the direction
of increasing �{s}. Henceforth, a complex unite vector is
defined by an over-ring.

1) The Field of the Direct Ray From r� to the Real Point r

We start by calculating the direct ray from the complex
source point rc to a given real observation point r =
(x, y). The distance along the ray is defined by s(r) =�
(x− xc)2 + (y − yc)2 with �{s} > 0. The properties of

this distance function has been explored thoroughly in the
literature (see e.g., in [2, Fig. 2a and Sec. 2.A]). It has been
demonstrated that when substituting this s into the free-space
Green’s yields a beam-field that propagates in real space along
the direction of the vector b.
Next, for that r we also calculate the ray direction

◦
s(r).

Using (7), we now find qj , the complex point where this ray
intercepts plane j defined above, and sqj , the distance along
the ray from rc to qj . Note, the sqj is defined uniquely via (7)
and it does not involve a square root. Therefor, �{sqj} may
be positive, if the complex ray that emerges from rc intercepts
plane j, or negative, if the complex ray is intercepts plane j
and then converges onto rc.

Selection rule 1: This ray is included in the field representa-
tion if qj does not belong to the complex extension of face j,
or if it does belong to the complex extension of face j but
with �{sqj} < 0. The field of that ray is given by

ψi(r) = G(r, rc) =
i

4
H (1)

0 (ks(r)) ∼ eiks(r)+iπ/4

�
8πks(r)

(8)

where the last term is the conventional approximation for
|ks| � 1. Expression (8) describes the incident CSB fields.

2) The field of the Reflected Rays

In order to calculate the reflected complex rays it is con-
venient to consider the image points r̄cj of rc with respect
to plane j. Next we calculate rays Rj from r̄cj to r in the
same manner we have done it before, obtaining also s̄j with
�{s̄j} > 0 and

◦
s̄j . We also calculate the complex points q̄j
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Fig. 2. Exact field calculation via (4) of the CSB field diffracted by a 45◦

wedge for kR0 = 100, φ0 = π/3, kb = 80, δb = 5◦. The figure depicts
the real part of the total field.

Fig. 3. As in Fig. 2 but for δb = −5◦.

where these rays intercept plane j and s̄qj , the distances from
rc to qj . These rays correspond to the rays going from rc to
r after reflection at qj on the complex plane j.
Selection rule 2: Rj is included in the field representation

only if rqj belongs to the complex extension of face j and
�{s̄j} > �{s̄qj}. The reflected field ψr is given by the
expression in (8) with s → s̄j and with the boundary reflection
coefficient.

B. Complex Ray Diffraction

As noted earlier, the complex edge is at the real point
(x, y) = 0. Therefore the diffracted field is given by

ψd(r) = G(0, rc)G(r,0)D(φ,φc), (9)

where D is given in (6) with w = 0. Actually (9) is the saddle
point contribution of (5) obtained by replacing H (1)

0 (kχ) =

Fig. 4. As in Fig. 2 but using only CRT analysis and without complex ray
diffraction.

Fig. 5. As in Fig. 4 but for the configuration in Fig. 3.

�
2

πkχe
ikχ−iπ/4. One finds that χ� = −rrc sin(w)/χ hence

the saddle point is at w = 0. The result in (9) is obtained by
noting that χ(0) = r + rc and χ��(0) = −rrc/(r + rc).
The asymptotic saddle point contribution in (9) is valid only

if the stationary point w = 0 is sufficiently isolated from the
poles of D in (6). As noted there, the relevant poles of the
first and second terms in (6) are given by w1,2 = φ∓ φc − π,
respectively. If the beam hits very close to the edge (δb � 1),
then φc ∼ φ0 (see discussion after (3)). In that case w1,2

are near w = 0 in the shadow and reflection transition zones
φ ≈ ±φ0 + π so that (9) is no longer valid and should be
replaced by a uniform asymptotic evaluation of the integral in
(5). Further away from these zones, the poles are sufficiently
removed from w = 0 and the non-uniform complex ray
diffraction contribution in (9) applies well (see Figs. 6 and 7).
If, on the other hand, the beam hits far from the edge, then
φc � φ0 (see (3)) so that w1,2 never pass near the stationary
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point and (9) is valid uniformly for all φ.

VI. NUMERICAL RESULTS

We consider the diffraction of a CSB field by a 45◦ wedge
(i.e., ϕ = 3π/2). The beam parameters are R0 = (R0,φ0) =
(100, 60◦), b = 80 where the units are set such that k = 1. The
resulting fields for beam displacements δb = ±5◦ (see Fig .1)
are shown in Figs. 2 and 3, respectively. These results were
calculated using the multipole expansion in (4). The scattered
and diffracted fields are clearly identified.
Figs. 4 and 5 depict the CRT fields corresponding to the

configurations in Figs. 2 and 3, respectively. Note the in view
of the selection rules in Secs. V-A(1) and (2) for the direct and
reflected fields, these fields are discontinuous in the shadow
and reflections boundaries.
Finally, Figs. 6 and 7 depict the fields in the configurations

of Figs. 2 and 3, respectively, as a function of φ at a
distance kr = 200. The calculations via the exact multipole
expansion (4) and the exact Sommerfeld integral (5) (red
and black dashed lines, respectively) are indistinguishable on
the figure scale. Also shown are the asymptotic CRT field
without and with the diffraction (blue-dashed and green-dotted
lines, respectively). Far from the transition zones, the CRT
with diffraction provides a faithful representation of the field,
but this formulation fails in the transition where a uniform
representation for the diffraction coefficient is required, as
discussed after (6) and (9). However, as discussed there, if
the beam hits sufficiently for from the edge then the non-
uniform diffraction coefficient of (9) does provide a uniform
representation for all φ.

VII. CONCLUSION

We explored the field of a 2D CSB scattering by a wedge
as a function of the beam direction and displacement from the
edge. We presented a new exact solution via the the complex
multipole expansion (4) and compared it with the Sommerfeld
integral solution (5). The latter has been formulated in a
way that extracts explicitly the asymptotic complex ray field
ψCRT. The properties of the the Sommerfeld integral solution
depend on the lit and shadow zones generated by the wedge.
Consequently, we explored the complex ray tracing (CRT)
for the wedge geometry and the selection rules that delineate
these lit and shadow zones. The validity of the new exact
formulations were demonstrated via numerical calculations
(Figs. 6, 7) that have also demonstrated the intriguing physical
features of the field (see Figs. 2, 3). Further insight have been
provided by the CRT solution (Figs. 4, 5). The long term goal
of this research is the derivation of scattering and diffraction
coefficients for a beam impinging on a tip of a cone [7].
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Fig. 6. The field corresponding to the configurations in Fig. 2 as a function
of φ at a distance kr = 200. The figure compares the exact fields calculated
via the multipole expansion (4) (black) and via the Sommerfeld integral (5)
(red) to the asymptotic CRT field (blue) and the CRT plus diffraction (green).
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Fig. 7. As in Fig. 6, but for the problem configuration of Fig. 3 with
δb = −5◦.
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