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Abstract—By making use of an earlier work [1] with due
modifications, we present an exact solution, although not in
explicit form, to diffraction of a skew incident electromagnetic
surface wave of either E or H type at an impedance wedge.
The asymptotic expression for the diffracted field in far field
suggests an alternative method of measurement that allows for
determining experimentally a large class of surface impedances.

I. INTRODUCTION

An exact closed-form solution to diffraction of a nor-

mally incident electromagnetic surface wave by an impedance

wedge is known since 1958 [2], on use of the eponymous

Sommerfeld-Malyuzhinets technique (e.g. [3]); based on [2], a

detailed study has been reported in [4] and [5]. Recently, these

results [2]–[4] have been applied to the study of conversion

of surface plasmon polaritons into photons at the edge of a

metallic wedge [6] and a new accurate method of measuring

the surface impedance of metals in the infrared (IR) range has

been proposed and demonstrated in [7] and [8].

In 2006, exact but non-explicit solutions to diffraction of

a skew-incident plane electromagnetic wave at an impedance

wedge appeared ([9], [10], [1]); see also a paper published

in 2008 [11] and a recent monograph [12]. This progress,

with due modifications where necessary, allows us to study

diffraction of a skew-incident electromagnetic surface wave

of either E or H type at an impedance wedge. The far-

field expression of the diffracted wave suggests an alternative

method for measuring the surface impedance by making use

not the scattering diagram, but rather the propagation constant

in the direction perpendicular to the edge of the wedge.

To carry out such an investigation, we make use of [1],

because of its demonstrated efficiency.

II. ANALYSIS

A. Formulation of the Problem

The canonical body under study, namely, an impedance

wedge, occupies the domain Φ < |ϕ| ≤ π and |z| < ∞
in the cylindrical co-ordinate system (r,ϕ, z); see Fig. 1.
The electric properties of the upper and lower faces of the

wedge at ϕ = ±Φ are characterised by the (with respect to
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Fig. 1. An impedance wedge under skew incidence of an electromagnetic
surface wave

the intrinsic impedance of the ambient homogeneous medium

Z0) normalised impedances η±. Therefore, the Leontovich

conditions hold good on the faces of the wedge

Er(r,±Φ, z) = ∓η±Z0Hz(r,±Φ, z),

Ez(r,±Φ, z) = ±η±Z0Hr(r,±Φ, z),
(1)

with η+ = i Im η+ being purely imaginary.

Let an electromagnetic surface wave travel on the upper face

of the wedge towards the origin of the co-ordinate system 0,
with the angle between the direction of propagation and the

z-axis being β0 (see Fig. 1). For convenience it is assumed

that there are 0 < β0 ≤ π/2 and Φ > π/2. The z-components
of such a wave are given by

[Z0H
inc
z (r,ϕ; z) Einc

z (r,ϕ; z)]T = U0e
−ik�

0
r cos(ϕ−ϕ0)+ik��

0
z,
(2)

with U0 = [U10 U20]
T, k�

0 = k0 sin θ0, k
��
0 = k0 cos θ0.

For an inductive upper face, that is Im η+ < 0, the surface
wave is of the E type because of the only non-vanishing field

component in the direction of propagation being electric. In

Copyright 2013 IEICE

Proceedings of the "2013 International Symposium on Electromagnetic Theory"

24AM1E-06

912 



this case we have

U0 = [−Z0H0 sin β0 − η+Z0H0 cos β0]
T, (3)

θ0 = arccos (γ� cos β0) , γ� =

�

1 − (η+)
2
, (4)

ϕ0 = Φ − ϕ̃, ϕ̃ = arcsin
�

η+/ sin β0

�

, (5)

The branch of γ� is chosen in such a way that Im γ� > 0 and
Re γ� ≥ 0 hold.
If the upper face is capacitive (Im η+ > 0), it supports a

surface wave of the H type with the only non-vanishing field

component in the direction of wave motion being magnetic.

The quantities that differ from the ones for the E type are

U0 = [E0 cos β0/η+ − E0 sin β0]
T, (6)

γ� =

�

1 − 1/ (η+)
2
, ϕ̃ = arcsin

�

1

η+ sin β0

�

. (7)

Therefore, the angles of incidence ϕ0 and θ0 are complex-

valued with |Re ϕ0| ≤ Φ, 0 ≤ Re θ0 ≤ π/2 and Im θ0 ≤ 0 in
line with the assumed range for β0.

The z-components of the total field takes the following form

[Z0Hz(r,ϕ; z) Ez(r,ϕ; z)]T = U(r,ϕ) exp (ik��

0 z) (8)

with U(r,ϕ) = [U1(r,ϕ) U2(r,ϕ)]T solving the two-

dimensional Helmholtz equation outside the wedge and sat-

isfying the respective conditions derived from (1) on the faces

of the wedge. Furthermore, it is subject to edge and radiation

conditions; see [1] and [12].

B. Integral Equations for the Spectra

As is well known, U(r,ϕ) can be expressed in terms of the
Sommerfeld integrals:

U(r,ϕ) =
1

2πi

�

γ

f(α + ϕ) e−ik�

0
r cos αdα, (9)

where γ denotes the Sommerfeld double-loop and f(α) =
[f1(α) f2(α)]T the spectra to be determined. The radiation

condition demands that f(α) − U0/ (α − ϕ0) be regular in
the strip |Re α| ≤ Φ, where ϕ0 is defined in (5).

Inserting (9) into the boundary condition (1) and inverting

the Sommerfeld integrals, one obtains a system of equations

for the spectra. For example, the equation for f1(α) reads

f1(α + 2Φ) −
b+
2 (α)

b−2 (α
f1(α − 2Φ) = q1(α)f1(α), (10)

with the coefficients b+
2 (α), b−2 (α) and q1(α) given in [1].

On use of f1(α) = F0(α)F1(α), the above functional
equation can be simplified to

F1(α + 2Φ) + F1(α − 2Φ) = Q1(α)F1(−α), (11)

with Q1(α) = q1(α)F0(−α)/F0(α + 2Φ) and the auxiliary
function F0(α) given in [1].
By making use of the S-integrals and taking into account

the edge and radiation conditions, an integral equivalent of

(11) in the strip |Re α| ≤ 2Φ reads

F1(α) =
νU10/F0(ϕ0)

sin ν(α − ϕ0)
+ A+

1 e−iνα + A−

1 eiνα

−
i

8Φ

� +i∞

−i∞

Q1(−t)F1(t)

cos ν(α + t)
dt, ν =

π

4Φ
. (12)

The constants A±

1 are fixed by deleting non-physical poles

f1(±Φ − π/2) = b±1 (∓Φ − π/2)f1(±Φ + π/2), (13)

The coefficients b±1 (α) are given in [1].
Relation (12), together with (13), amounts to an integral

equation for F1(α) on the imaginary axis of the complex α-
plane. These values can be obtained by solving numerically the

integral equation and then extrapolated into the strip |Re α| ≤
2Φ on use of (12). Similarly, the second spectrum f2(α) can
be deduced. Inserting them into the Sommerfeld integrals (9)

leads to an exact solution, although not in explicit form, to the

problem under study.

C. Far-Field Expansion

Deforming the path of integration γ in (9), U(r,ϕ) can be
rewritten as

U(r,ϕ) = U
go

(r,ϕ) + U
sw

(r,ϕ) + U
d
(r,ϕ). (14)

For large |k�
0r|, the diffracted part U

d
(r,ϕ) is given by

U
d
(r,ϕ) ∼ Q(ϕ) eik�

0
r/
√

r (15)

with the non-uniform diffraction coefficient (scattering dia-

gram)

Q(ϕ) =
�

f(ϕ − π) − f(ϕ + π)
�

�

i/(2πk�
0). (16)

A uniform expression for the diffracted field can be given in

a similar way as in [1]; the same is true for the geometrical-

optics and surface-wave ingredients of the total field.

D. An Alternative Measurement Method

Below we confine our analysis to the case of an incident

electromagnetic surface wave of the E type. The case of an

incident electromagnetic surface of the H type can be studied

in a similar fashion.

For |η+/ sin β0| � 1, it turns out from (5) that there is

ϕ̃ ≈ η+/ sin β0. Therefore, in line with (16) and (12), the

scattering diagram Q(ϕ) near the “shadow boundary” of the

incidence at ϕ = Φ − π is proportional to

1/(∆ϕ + η+/ sin β0), ∆ϕ = ϕ − (Φ − π). (17)

In the infrared and optic regions, the surface impedance of

good conductors like copper is almost purely imaginary. As

indicated by (17), in a small neighbourhood of the shadow

boundary of incidence at ∆ϕ = 0 the angular intensity

distribution of the diffracted field is then a Lorenzian curve,

whose width is 2/ sin β0 times the imaginary part of the

surface impedance. Based precisely on this fact, a new accu-

rate method has been proposed for determining the surface
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impedance by measuring the scattering diagram at normal

incidence with β0 = π/2 ([7], [8]).
To measure in addition those surface impedances which

are no longer confined to |η+| � 1, the expression for the
diffracted field (15) suggests an alternative way: to measure

the wave number k0 sin θ0 in the radial direction r and then
to calculate the surface impedance η+ by solving relation (4),

η+ = −i
�

�

1 − sin2 θ0

�

/ cos2 β0 − 1. (18)

As indicated clearly by the first relation of (4), it is the

skew incidence with β0 �= π/2 that enables such an alternative
method of measurement for surface impedances.

Detailed results and their discussion will be presented at the

conference.

III. CONCLUSION

In this paper we have reported an exact solution, although

not in explicit form, to diffraction of a skew-incident electro-

magnetic surface wave of either E or H type at an impedance

wedge. Thereby we have made use of an earlier work [1].

The unknown field is represented in terms of the Sommerfeld

integrals. By inverting the Leontovich condition on the faces

of the wedge, a system of equations for the spectra (complex

plane-wave amplitudes) turns out. An integral equivalent of

this system of functional equations is then established with the

aid of the S-integrals. By solving the integral equation along

the imaginary axis of the complex angle α the spectra there

are obtained and then extrapolated using the same integral

expression to a strip that contains at its centre the imaginary

axis. By evaluating the Sommerfeld integrals at large distance

from the edge we have derived an asymptotic expression for

the far field. The asymptotic expression for the diffracted field

in far field suggests an alternative method of measurement

which allows for the determination of a large class of surface

impedances.
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