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Abstract—This presentation focuses on the perfect analogy
between the Maxwell Garnett mixing formula and the effective
polarizability of a piecewise homogeneous dielectric sphere. Due
to this correspondence, it is possible to transfer results between
these domains, from extended mixtures to properties of single-
particle scattering, and vice versa. As examples, we discuss
the bounds for the effective parameters, dispersive character
of mixtures, plasmonic cloaking, multiphase mixtures, and non-
spherical extensions.

I. INTRODUCTION

The effective permittivity of a mixture according to the

Maxwell Garnett (MG) formula [1] is well known:

εMG = εe + 3εep
εi − εe

εi + 2εe − p(εi − εe)
(1)

Here spherical inclusions with permittivity εi take a volume

fraction p in a host medium with permittivity εe.
1 Despite its

simplicity, the Maxwell Garnett formula has proven to be quite

applicable for ordered mixtures for low or moderate inclusion

loadings, even in the case of plasmonic mixtures [2].

From the scope of the present paper, it is particularly

essential to note the interconnection between the MG formula

and the Lorenz–Lorentz (Clausius–Mossotti) relation, which

gives the effective permittivity as function of the normalized

polarizability of the inclusion spheres

εMG − εe
εMG + 2εe

=
pα

3
(2)

where the normalized polarizability of the inclusion spheres α
has the value 3(εi − εe)/(εi + 2εe).

As another avenue to effective description of mixed struc-

tures, instead of an extended mixture, one can also study the

heterogeneity of a single composite particle. It is the aim of

this presentation to point out the correspondence between the

classical mixing formulas and effective dipole moment of a

layered piecewise homogeneous dielectric sphere.

II. HOMOGENIZATION BY EFFECTIVE POLARIZABILITY

Consider a composite sphere consisting of a spherical core

(radius a, permittivity ε2) surrounded by a spherical coating

1All permittivities are relative (dimensionless).

(radius b, permittivity ε1), both isotropic. The normalized

polarizability of such a sphere reads [3, Sec. 4.3]

αk = 3
(ε1 − 1)(ε2 + 2ε1) + g(2ε1 + 1)(ε2 − ε1)

(ε1 + 2)(ε2 + 2ε1) + 2g(ε1 − 1)(ε2 − ε1)
(3)

where g = (a/b)3 measures the relative fraction of the core.

This formula projects the three internal parameters of the

particle into a single number, the polarizability. Given the

deterministic structure if the sphere, α is uniquely fixed by the

internal structure, but not vice versa. There are several (infinite

number of) possible spheres with the same polarizability. Of

these, the simplest one is a homogeneous sphere.

Fig. 1 visualizes the idea of the present paper: not being

interested in the internal structure of the composite sphere, we

look for the effective permittivity for a homogeneous sphere

that externally would look exactly like the original layered

sphere (in a locally uniform static field). This leads us to the

following relation

εeff = 1 +
αk

1− αk/3
(4)

where εeff is determined by (3).

Such a homogenization principle can also be called internal

homogenization [4].
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Fig. 1. Two-layer sphere and its homogenized version.

It does not require very much algebra to show that εeff in
(4) and εMG in (1) are equal when the following conditions

are met:

ε1 = εe, ε2 = εi, g = p (5)

In other words, the permittivity that results from the effective-

polarizability condition of a layered sphere is exactly the same

as the Maxwell Garnett prediction when the core is treated as

the inclusion and the surrounding shell as the host matrix!
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III. CONSEQUENCES

The exact correspondence between the homogenization of

the layered sphere on one hand and Maxwell Garnett mixing

rule on the other, provides us with the possibility to tranfer

the rich repertoire of results from either of these two domains

to the other. Let us shortly discuss some of these.

A. Hashin–Shtrikman Bounds

A wide literature exists discussing the question about

bounds for the effective material parameters of mixtures [5],

[6], [7]. The Hashin–Shtrikman bounds for the effective per-

mittivity of a statistically homogeneous and isotropic mixture

are exactly the Maxwell Garnett formula and its inverse form

(where the roles of the inclusion and the host phases are

interchanged).

Let us interpret this fundamental result within the context

of the polarizability of a composite sphere. We can then

deduce the following optimization rule to build up the smallest

possible dipole moment from a given amount of two materials

with permittivity ε1 and ε2: if ε2 > ε1, the minimum

polarizability results from putting all material 2 to the center

and material 1 form the outer layer around it. Likewise, the

recipe for the “heaviest” sphere requires that material 2 forms

the coating. All other possibilities of moulding the materials

into a spherical form lead to dipole moments between these

two values.

B. Dispersion Engineering

Dielectric materials are dispersive. Their permittivity is a

function of frequency.When dispersive materials are combined

with other materials, the mixture displays a new type of

dispersion. It is known [3, Ch. 12], for example, that if

in a mixture the inclusions obey Debye-type dispersion and

the environment is dispersionless, the MG prediction for the

effective permittivity is also Debye-type but the dispersive

region is blue-shifted in frequency, sometimes quite strongly.

As another example of dispersive heterogeneities, for a mixture

where a non-dispersive insulating medium hosts conducting

Drude-type inclusions, the effective behavior is a Lorentz

dispersion with a resonance character.

Again, we can directly take these results into the analysis

of the polarizability of the composite particle. For example,

by enclosing a water droplet (which is a Debye dielectric) by

a neutral dielectric spherical shell, the relaxation frequency

of the particle can be controlled. Likewise, when a metallic

sphere is surrounded by a dielectric layer, it attains a plasmonic

resonance whose properties can be adjusted by the layer

permittivity and thickness.

C. Cloaking Applications

The reverse route is also possible: transfer of results from

composite inclusions into the domain of dielectric mixtures.

One example is the problem of invisible inclusions. The polar-

izability of a layered sphere can be made zero by matching the

permittivities and thicknesses of the layers using the condition

(3) [8]. Of course, in this case, one of the permittivities has to

be less than unity, or even negative. Such a cloaking principle

has been called plasmonic cloaking [9].

What does this mean in the domain of dielectric mixtures?

The recipe that gives zero polarizability for a core-shell

sphere can be directly taken for designing composite materials

with unit permittivity. Obviously such media do not interact

with the electric field, and hence would be very useful in

various applications involving mechanical support structures of

radiating or receiving antennas. In the composite, the less-than-

unity dielectric can serve either as the matrix or the inclusion,

just like in the case of the invisible layered sphere, either the

core or shell can be plasmonic.

D. Multilayer Sphere

The concept of the effective permittivity of a layered

sphere can be naturally extended to several spherical layers.

The polarizability of an N -layer sphere αN can be written

explicitely as a recursive extension of the two-layer result (3),

see [10]. Using, e.g. α3, instead of αk = α2 in (4) returns us

the Maxwell Garnett prediction for the effective permittivity

of a mixture where two-layer spheres work as inclusions in

the environment that is of the material of the outermost layer.

However, the three-layer sphere does not correspond to a

mixture where two separate phases ε2 and ε3 would be inde-

pendently embedded in the host ε1 like in Fig. 2 (left panel).

This raises the question about the partial homogenization of

the inclusions: what would be the effective permittivity ε23
with which the phases 2 and 3 should be replaced so that the

total mixture would have the same permittivity in both cases

in the figure (right panel). In this case the phases 2 and 3

have fully symmetrical roles in the mixture whereas in the

three-layer sphere the order of the layers has a crucial effect.

ε1ε1

ε2ε2

ε2

ε3
ε3

ε3 ε23

ε23

ε23
ε23

ε23

ε23

Fig. 2. Partial homogenization of a multiphase mixture.

Using the result for the multiphase mixture MG formula [3,

Sec. 4.1] and balancing the effective permittivity with that of

the two-phase MG result, the partial homogenization of Fig. 2

can be written as

ε23 = (ε2+2)(ε3+2)+2p2(ε2−1)(ε3+2)+2p3(ε3−1)(ε2+2)
(ε2+2)(ε3+2)−p2(ε2−1)(ε3+2)−p3(ε3−1)(ε2+2) (6)

where p2 and p3 are the relative volumes of phases 2 and

3 from the volume occupied by them jointly. This form em-

phasizes the symmetrical role of the two phases with volume

fractions p2 and p3 of the two phases. Note that p3 = 1− p2.
The relation (6) can be forced into a Maxwell-Garnett-type

form which hides the symmetry between phases 2 and 3:

ε23 = ε2 + (ε2 + 2)p3
ε3 − ε2

ε3 + 2− p3(ε3 − ε2)
(7)
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Here, obviously p3 = 0 returns ε23 = ε2, and in case p3 = 1
we have ε23 = ε3.

E. Non-Spherical Extension

Finally, let us study whether the homogenization correspon-

dence which is in the focus of this paper can be generalized

into a non-spherical geometry. As is known, the MG mixing

rule can be extended into mixtures where the inclusions are

ellipsoidal in form [3, Sec. 4.2]. Assuming that all ellipsoids

are orientationally aligned, the mixture is anisotropic. Further-

more, the permittivity component along any of the axes of the

ellipsoids reads

εeff,j = εe + pεe
εi − εe

εe + (1 − p)Nj(εi − εe)
(8)

where Nj is the depolarization factor of the ellipsoid εi in the

direction of the axis j. Note that Nj = 1/3 returns (1).

The polarizability component αj of a homogeneous ellip-

soid in free space reads

αj =
εeff,j − 1

1 +Nj(εeff,j − 1)
(9)

Now, combining the MG result (8) for the effective permittivity

with the polarizability (9) gives us the expression

αj =

εe − 1 +
p(εi − εe)(εe +Nj(1− εe))

εe +Nj(εi − εe)

1 +Nj(εe − 1) +
pNj(1−Nj)(εe − 1)(εi − εe)

εe +Nj(εi − εe)
(10)

This result, however, does not exactly match the polarizability

of a layered ellipsoid. The polarizability of a layered ellipsoid

can be solved in closed form provided that the ellipsoidal

interfaces are confocal. This means that the axis ratios do not

remain the same for each layer. Then also the depolarization

factors change.

For example, the two-layer ellipsoid result for the polariz-

ability component in the direction j reads [11]

αj =

εe − 1 +
p(εi − εe)(εe +Nje(1− εe))

εe +Nji(εi − εe)

1 +Nje(εe − 1) +
pNje(1−Nje)(εe − 1)(εi − εe)

εe +Nji(εi − εe)
(11)

where the depolarization factors Nji and Nje are those (in

direction j) of the core inclusion and shell environment

ellipsoids, respectively, and they are not equal.

Formulas (10) and (11) become equal in limiting cases:

when the ellipsoid degenerates to a sphere, and also when

the outer layer becomes thin. As an example, Fig. 3 shows

the confocality requirement of an oblate ellipsoid (flattened

sphere) when the whole ellipsoid has axial ratio 0.5 and the

core volume is half of the total ellipsoid. In this case the

depolarization factors in the direction of the axis of revolution

(vertical, axial direction in the figure) are Nje = 0.527 for the

total ellipsoid and Nji = 0.641 for the core ellipsoid.

Fig. 4 displays the differences in the effective axial permit-

tivity for the case when the core is of permittivity εi = 10

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

Fig. 3. Confocal oblate ellipsoids in the case when p = 0.5 and the axis
ratio of the environment ellipsoid is 1:2. Note the difference in axis ratios of
the core and the shell which leads into non-equal depolarization factors for
the two ellipsoids.

and the shell εe = 2. The effective axial permittivity of the

composite ellipsoid is shown as function of the fractional

volume of the core. The ellipsoid is oblate with the axis of

revolution being one half of the equator axis like in Fig. 3.

The figure shows that either for a small core (g ≪ 1), or for
a thin shell (1− g ≪ 1), the two predictions match.
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Fig. 4. The effective axial permittivity εeff,z of a composite ellipsoid as a
function of the core fraction. Permittivity of the core is 10 and that of the
shell 2. The ellipsoid is oblate with axis ratio 1:2. Solid blue line: calculated
from the MG-based formula (10); dashed red line: calculated from the layer-
ellipsoid formula (11).

IV. CONCLUSION

In this presentation, the exact correspondence between

the classical Maxwell Garnett mixing formula for spherical

inclusions on one hand and the homogenization condition

for a composite sphere on the other was analyzed. In par-

ticular, it was applied for transfer of results between these

two regimes. The agreement between the two formulas is

particularly surprising due to the fact that the problem of a

single-particle solution is an exact solution of a deterministic

problem whereas the derivation of the Maxwell Garnett mixing

rule relies on approximations for the interaction fields between

neighboring particles in the mixture. For example, the polar-

izability formula (3) holds for any combination of parameters,
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whereas the applicability of of the MG formula (1) is limited

to low or moderate volume fractions in practical applications.

Due to the long history of homogenization studies (the

earliest ones heralding the Maxwell Garnett formula date

from the 19th century), a wealth of theoretical results for

mixtures exists in the literature and can be used for the

understanding of the behavior of layered spheres, for example,

bounds for the polarizability or dispersion behavior. These can

be exploited for various purposes, like meteorological remote

sensing of hydrometeors, or design of plasmonic nanoparticles

for sensing applications.
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