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Abstract—The systropic sphere is a spherical scatterer whose
axes of anisotropy are defined by spherical coordinates. This
contribution discusses the electrostatic scattering from a systropic
sphere with extreme material parameters. The permittivity di-
vides into three component in the spherical coordinates. Larger
component values produce more polarizability, but there is a limit
to the increase of the polarizability. There is also a limit to the
polarizability decrease when the components become small. The
goal of this contribution is to illustrate the electrostatic response
of the different extreme parameter systropic spheres.

I. INTRODUCTION

A spherical shape attracts plenty of attention in the elec-
tromagnetics literature. The topic is focal for three reasons.
First, a variety of natural objects take approximately spherical
shape. Second, spherical objects have numerous engineering
applications. Third, a spherical shape simplifies the mathemat-
ical analysis.

A particularly interesting class of spherical objects consists
of onion-like structures that combine multiple tightly strati-
fied concentric spherical layers. From the point of view of
electromagnetics, such onion-like structures have anisotropic
material parameters. Even though the object itself is spheri-
cally symmetric, the material responds differently to the radial
electric field component than to the tangential one. Therefore
the material is locally anisotropic. The dyadic representation
of the relative permittivity of such a sphere is

¯̄ε = εrrurur + εθθuθuθ + εϕϕuϕuϕ (1)

where the two tangential permittivity components are equal
εt = εθθ = εϕϕ. The sphere with this material parameter
profile has been labeled radially uniaxial (RU) [1]. The ratio
between the radial and the tangential permittivity components
is called the anisotropy ratio AR = εrr/εt. Thus, an isotropic
sphere is an RU-sphere with AR = 1. The radar cross section
of an RU-sphere can be calculated analytically [2]. The RU-
sphere has also been introduced in electrostatics [3], [4].

The concept of the RU-sphere can be generalized to include
spherical objects that have two separate tangential permittivity
components. The members of this broader class of spherical
scatterers have been labeled systropic. The word “systropic”
originates from the Greek word ’’συστροφή’’ meaning “to
twist”. In the present use, the word “systropic” refers to a
material whose axis of anisotropy is defined by the spherical
coordinates. The ratio between the two tangential components
is called the systropy ratio SR = εϕϕ/εθθ.

The electrical response of a systropic sphere is more
complex than that of an RU-sphere. The added complexity

originates from the different symmetry properties of these two
scatterers. The RU-sphere is spherically symmetric whereas
the systropic sphere is rotationally symmetric with respect
to the z-axis. Assuming a static and uniform excitation field
Ep(r), the electrical response of the systropic sphere can be
expressed in terms of a dipole field Ed(r) in the far-region of
the sphere. The factor of proportionality between the electric
excitation field Ep and the dipole moment p corresponding to
the dipole field Ed(r) is the polarizability of the scatterer

p = ¯̄α ·Ep (2)

Denoting the volume of the sphere by V and the absolute
permittivity by ε0, the following normalization is adopted to
obtain a dimensionless quantity

¯̄αn =
¯̄α

ε0V
(3)

The proportionality is expressed in terms of a dyadic
because the magnitude of the electric response may depend
on the orientation of the excitation field Ep due to the
possible lack of spherical symmetry. On the other hand, the
polarizability of the RU-sphere is a scalar.

The polarizability of the systropic sphere divides into two
components: one for the excitation field E‖ that is parallel to
the axis of symmetry of the scatterer and one for the transverse
excitation field E⊥. Thus, the polarizability dyadic can be
written as

¯̄αn = αn,‖uzuz + αn,⊥ (̄̄I− uzuz) (4)

The rotational symmetry implies that the systropic sphere
virtually reduces to an RU sphere when the parallel excitation
field is applied. The permittivity component εϕϕ becomes
irrelevant, because the total electric field inside the scatterer is
perpendicular to uϕ. In consequence, the parallel polarizability
can be solved analytically.

The transverse polarizability αn,⊥ proves more intricate.
The orientation of the excitation field breaks the rotational
symmetry of the scattering problem allowing the component
εϕϕ to contribute to the perturbation field. An analytical
solution for the transverse polarizability αn,⊥ is difficult to
obtain. Instead, the problem can be solved semi-analytically.

II. GENERALIZED LAPLACE EQUATION

The Laplace equation for sourceless anisotropic medium is

∇ · (¯̄ε · ∇φ) = 0 (5)
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Substituting the material parameters (1) and expressing the
∇-operator in spherical coordinates gives

εrr
r2

∂

∂r

(
r2
∂φ

∂r

)
+

εθθ
r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

εϕϕ

r2 sin2 θ

∂2φ

∂ϕ2
= 0 (6)

This differential equation can be separated into three parts.
The most intricate one is the equation for the θ-dependence.
Writing x = cos θ the equation becomes

(1− x2)g′′(x)− 2xg′(x)

+

[
(µ+ l)(µ+ l + 1)− µ2

1− x2

]
g(x) = 0, −1 ≤ x ≤ 1

(7)
where µ =

√
εϕϕ/εθθ and l = 0, 1, 2, · · · is a separation

constant. A finite and symmetric solution for this equation is

g(x) = (1− x2)µ/2C
(µ+ 1

2 )

2l (x) (8)

where C
(µ+ 1

2 )

2l is a Gegenbauer (ultraspherical) polynomial
[5]. The symmetry g(x) = g(−x) rules out the odd-degree
Gegenbauer polynomials.

The different values for the separation constant l give
different solutions φl(r) to (6). The general solution can be
expressed as an infinite sum of these solutions. Because the
homogeneous and isotropic material in which the sphere is
embedded is a special case of the systropic material, the
decomposition into infinite sums applies both inside the sphere
φin =

∑
Alφin,l and outside the sphere φout =

∑
Blφin,l.

The coefficients Al and Bl are determined by the interface
conditions φin = φout and εrr∂rφin = ∂rφout applied on the
surface of the sphere. Because the infinite sums must be cut
into finite ones and the resulting equation group gives only an
approximative solution for the field φout, the method does not
provide an analytical solution except for the readily available
solution of the RU-sphere. The semi-analytical approximation,
however, is reliable for a wide range of material parameters.

III. RESULTS

The described method allows the computation of the trans-
verse polarizability αn,⊥ for a wide range of material pa-
rameter values. Figure 1 shows the results for constant εϕϕ
values and varying εrr and εθθ. It stands to reason that
high permittivity values cause a high polarizability and low
permittivity values cause a low polarizability. It is also rather
intuitive that the polarizability has the upper and lower bounds.
The upper bound turns out to be αn,⊥ = 3, corresponding
to the PEC-sphere, and the lower bound αn,⊥ = −3/2,
corresponding to the PMC-sphere. However, the upper bound
is not reached if εϕϕ vanishes. Instead, the polarizability
remains negative regardless of the values εrr and εϕϕ. If the
component εϕϕ would deviate from zero even slightly, large
εrr and εϕϕ could enforce a PEC-sphere.

It seems that large values of the components εrr, εθθ, and
εϕϕ drive the polarizability towards that of a PEC-sphere,

10
−5

10
0

10
5

10
10

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

ǫrr , ǫθθ

α
n
,⊥

 

 

α
n,⊥

=−0.64

ǫrr = ǫθθ , ǫϕϕ = 10
ǫrr = ǫθθ , ǫϕϕ = 1
ǫrr = ǫθθ , ǫϕϕ = 0.005
ǫrr = ǫθθ , ǫϕϕ = 0

Figure 1. Polarizability curve of a scatterer with small or vanishing εϕϕ.
The lowest curve deviates markedly from the rest because it displays only
negative polarizability.

whereas small component values drive the polarizability to-
wards that of a PMC-sphere. However, the paradoxical result
of Figure 1 shows that the polarizability can have some strange
properties in these extremes. It is thus important to consider the
behavior of the polarizability αn,⊥ when extreme components
are involved. The extreme values are easier to analyze for the
RU-sphere than for the general systropic sphere. Analytical
solution for the scattering of the general systropic sphere is
still missing, but the extreme values of an RU-sphere can be
found by manipulating an analytic formula.

The polarizability of the RU-sphere is given by

αn,RU = 3
εr + 2− εr

√
1 + 8 εtεr

εr − 4− εr
√

1 + 8 εtεr

(9)

where εr = εrr and εt = εθθ = εϕϕ are the material parame-
ters of the RU-sphere. The following values for polarizabilities
αn can be obtained when either one or both of the components
εr and εt have special values:

αn = 3
ε− 1

ε+ 2
, εr = εt = ε

αn = −3

2
, εr → 0, 0 < εt <∞

αn =
3(2εt − 1)

2(εt + 1)
, εr →∞, 0 < εt <∞

αn = −3

2
, εt → 0, 0 < εr <∞

αn = 3, εt →∞, 0 < εr <∞

(10)

There is a notable asymmetry between the two components. A
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PEC-like sphere can be enforced by choosing εt →∞ but not
by choosing εr → ∞. To produce a PMC-like sphere, either
one of the two components εr, εt has to vanish.

It is worth noting in (10) that the limit of the polarizability
αn would become ill-defined if the two components would
approach opposite extremes, the εr component becoming in-
creasingly large and the εt component becoming diminishingly
small. In that case

lim
εr→0

(
lim
εt→∞

αn

)
= 3 (11)

lim
εt→∞

(
lim
εr→0

αn

)
= −3

2
(12)

The above equations show that the limit is not commutative.
The order in which the two limits are applied decides between
a PEC-like and a PMC-like polarizability. The other combi-
nation of extremes, εr →∞ and εt → 0, is less troublesome.
The limits can be taken in an arbitrary order:

lim
εr→∞

(
lim
εt→0

αn

)
= lim
εt→0

(
lim
εr→∞

αn

)
= −3

2
(13)

One way to alleviate the problem of ill-defined limits is to
replace the double limit with a single limit that changes the
two parameters simultaneously. Using the geometric average
of the two components ε = (εrεt)

1/2 and the anisotropy ratio
AR = εr/εt, the polarizability can be expressed as

αn = 3
ε
√

AR + 2− ε
√

AR + 8

ε
√

AR− 4− ε
√

AR + 8
(14)

If the anisotropy ratio is finite, the polarizability αn has the
following limits

lim
ε→∞

αn = 3 (15)

lim
ε→0

αn = −3

2
(16)

If, on the other hand, the geometric average ε is fixed, the
following limits can be found

lim
AR→∞

αn = −3

2
(17)

lim
AR→0

αn = 3

√
2ε− 1√
2ε+ 2

(18)

The electrical response can also be calculated for the general
systropic sphere in the extreme parameter cases. As before, it
is necessary to change all the parameters in unison in order to
obtain a well defined limit. Defining a parameter M , which
represents a large positive real number, each of the parameters
εrr, εθθ, and εϕϕ gets either the value M or M−1. The
results of these polarizability calculations are summarized in
Table I. The question mark signifies the polarizability values
that remain unknown in the light of present research.

Table I
COMPETING EXTREME PERMITTIVITIES WHEN M →∞

εrr εθθ εϕϕ αn,⊥

M−1 M−1 M−1 −3/2
M−1 M−1 M ?
M−1 M M−1 −1.23
M−1 M M 0.364
M M−1 M−1 −3/2
M M−1 M ?
M M M−1 0.456
M M M 3

IV. CONCLUSION

This contribution analyzed the scattering properties of ex-
treme parameter systropic spheres. The results for RU-spheres
were considered first. It turned out that extreme parameter
RU-spheres could be analyzed by using an analytical formula.
The results for the general systropic sphere proved more
difficult to produce. There were combinations of extreme
material parameters that could not be analyzed with sufficient
confidence. The systropic sphere was analyzed only in some
special cases.

The systropic sphere is a spherical scatterer, which is not
spherically symmetric due to the complex material parameters.
As such it provides insights about the effects of stark material
parameter contrasts. It is important to analyze this sort of
contrasts analytically because the numerical survey of extreme
parameter scatterers is notoriously difficult. Semi-analytical
results for the systropic spheres can show how accurate or
inaccurate the numerical descriptions are. They also offer a
glimpse of the paradoxical character of the extreme parameter
materials.
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